Cho biểu thức M=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn biểu thức M
b) Tìm giá trị của x để biểu thức M đạt giá trị nhỏ nhất
Cho các biểu thức A = \(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\) và B = \(\frac{\sqrt{x}-1}{2}\) với \(x\ge0;x\ne1\)
a) Rút gọn biểu thức A
b) Tính giá trị của biểu thức B với \(x=37-20\sqrt{3}\)
c) Tìm giá trị lớn nhất của biểu thức P = \(\frac{A}{B}\)
cho hai biểu thức A=\(\frac{2}{\sqrt{x}-2}\) và B=\(\frac{\sqrt{x}}{x+1}-\frac{4\sqrt{x}+2}{x\sqrt{x}-2x+\sqrt{x}-2}\) với x≥0 và x≠4
1, tính giá trị của A khi x=\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
2, rút gọn biểu thức P=A+B
3, tìm giá trị của x để biểu thức P đạt giá trị lớn nhất
Cho các biểu thức:
A=\(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\) và B= \(\frac{\sqrt{x}-1}{2}\) với x≥0 x≠1
a) Rút gọn biểu thức A
b)Tìm giá trị lớn nhất của biểu thức P=\(\frac{A}{B}\)
Cho biểu thức: B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\) với x > 0, x ≠ 1
a, Rút gọn biểu thức B
b, Tìm giá trị của x để biểu thức B có giá trị nhỏ hơn \(\frac{1}{2}\)
Cho biểu thức Y=\(\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+1-\frac{2x+\sqrt{x}}{\sqrt{x}}\)
a. Rút gọn biểu thức Y. Tìm giá trị nhỏ nhất của Y
b. cho x>1. Chứng minh rằng Y-|Y|=0
Bài 1 : Với \(2\le x\le4\). Tìm giá trị nhỏ nhất của biểu thức : \(M=2x^2-12x+2041-2\sqrt{x-2}-2\sqrt{4-x}\)
Bài 2 : Cho \(A=\dfrac{x-2}{x+3}\). Với x > 2, so sánh A với \(\sqrt{A}\)
Cho hai biểu thức: P = (sqrt(x - 2))/(sqrt(x) - 3) và Q = √x 6√x + 3 √x-3 9-x √x+3 (với x>0; x#9) a) Tính giá trị của P khi x = 9 . b) Rút gọn Q. c) Tìm x để biểu thức A = P.Q đạt giá trị nhỏ nhất.