\(M=\dfrac{B}{A}=\dfrac{\dfrac{\sqrt{x}+1}{\sqrt{x}+3}}{\dfrac{x-\sqrt{x}+2}{\sqrt{x}+3}}=\dfrac{\sqrt{x}+1}{x-\sqrt{x}+2}\)\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\)
Dễ thấy: \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall x\)
Và \(\sqrt{x}+1\ge1\forall x\)\(\Rightarrow M=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\ge1\)
Xảy ra khi \(x=1\)
Lời giải:
Ta có:
\(B:A=\frac{\sqrt{x}+1}{\sqrt{x}+3}:\frac{x-\sqrt{x}+2}{\sqrt{x}+3}=\frac{\sqrt{x}+1}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{x-\sqrt{x}+2}=\frac{\sqrt{x}+1}{x-\sqrt{x}+2}\)
Đặt \(\sqrt{x}+1=t\Rightarrow \sqrt{x}=t-1\)
Khi đó:
\(M=B:A=\frac{t}{(t-1)^2-(t-1)+2}=\frac{t}{t^2-3t+4}\) \((t\ge 1)\)
\(\Rightarrow M(t^2-3t+4)-t=0\)
\(\Leftrightarrow Mt^2-t(3M+1)+4M=0\)
Nếu \(M=0\rightarrow t=0\) (vô lý vì \(t\geq 1\) ) \(\rightarrow M\neq 0\)
Khi đó: \(\Delta=(3M+1)^2-16M^2\geq 0\)
\(\Leftrightarrow -7M^2+6M+1\geq 0\)
\(\Leftrightarrow -\frac{1}{7}\leq M\le 1\), tức là M đạt max bằng $1$
Khi đó \(t^2-4t+4=0\Leftrightarrow t=2\) \(\Leftrightarrow x=1\) (thỏa mãn)
Vậy \(x=1\)
\(M=\dfrac{B}{A}=\dfrac{\dfrac{\sqrt{x}+1}{\sqrt{x}+3}}{\dfrac{x-\sqrt{x}+2}{\sqrt{x}+3}}=\dfrac{\sqrt{x}+1}{x- \sqrt{x}+2}\)\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\)
Dễ thấy: \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall x\)
Và \(\sqrt{x}+1\ge1\forall x\)\(\Rightarrow M=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7} {4}}\ge1\)
Xảy ra khi \(x=1\)