cho A=\(\dfrac{\text{1/2+1/4+1/6+...+1/4026 }}{1+1/3+1/5+...+1/4025}\)
So sánh A với 2013/2014
Câu 3: Cho A=\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{4026}\)
B=\(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}\)
So sánh \(\dfrac{A}{B}\) và \(1\dfrac{2013}{2014}\)
Cho A=1+\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{4026}\)
B=1+\(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{4025}\)
So sánh \(\frac{A}{B}vs1\frac{2013}{2014}\)
So sánh 2 p/số
\(A=\dfrac{2014^{2013}+1}{2014^{2014}+1};B=\dfrac{2014^{2012}+1}{2014^{2013}+1}\)
Tìm x:
a)\(2016x+\left(\dfrac{7}{12}+\dfrac{4}{21}+\dfrac{2}{24}+\dfrac{11}{30}+\dfrac{3}{40}+\dfrac{15}{56}\right)-\left(\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}\right)=0\)
b\(\dfrac{2x-1}{x+2015}-\dfrac{4025}{x+2017}=\dfrac{x-2014}{2x-4036}-\dfrac{x-2013}{2x-4030}\) (x thuộc N)
c)\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{4016}{2007}\)
AI GIÚP MK VỚI MK TICK CHO
Cho A=\(\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2013^2}-1\right)..\left(\frac{1}{2014^2}-1\right)\&B=\frac{1}{2}\) so sánh A và B
Tính giá trị của biểu thức sau:
A=\(a.\dfrac{1}{2}-a.\dfrac{2}{3}+a.\dfrac{3}{4}\)với a=\(\dfrac{-6}{5}\)
B=\(\dfrac{-1}{6}.\)b+\(\dfrac{4}{3}\).b -\(\dfrac{1}{2}\).b với b= \(\dfrac{-3}{7}\)
C=c.\(\dfrac{5}{4}\)+c.\(\dfrac{1}{6}\)-c.\(\dfrac{17}{12}\)với c= \(\dfrac{2013}{2014}\)
So sánh
a) \(\dfrac{21}{52}\) và \(\dfrac{213}{523}\)
b) \(\dfrac{n}{n+1}\)và \(\dfrac{n+2}{n+3}\)
c) \(\dfrac{n}{n+3}\)và \(\dfrac{n-1}{n+4}\)
d) \(A=\dfrac{2^{2012}-1}{2^{2013}-1}\) và \(B=\dfrac{2^{2013}-1}{2^{2014}-1}\)
e) \(D=\dfrac{5^{12}+1}{5^{13}+1}\)và \(E=\dfrac{5^{11}+1}{5^{12}+1}\)
Cho A = 1/2 + 1/3 + 1/4 + ...+ 1/2016
B = 1/2015 + 2/2014 + 3/2013 + ... + 2014/2 + 2015/1
Tính B : A