cho A=\(\dfrac{\text{1/2+1/4+1/6+...+1/4026 }}{1+1/3+1/5+...+1/4025}\)
So sánh A với 2013/2014
cho A=\(\dfrac{\text{1/2+1/4+1/6+...+1/4026 }}{1+1/3+1/5+...+1/4025}\)
So sánh A với 2013/2014
Tìm x:
a)\(2016x+\left(\dfrac{7}{12}+\dfrac{4}{21}+\dfrac{2}{24}+\dfrac{11}{30}+\dfrac{3}{40}+\dfrac{15}{56}\right)-\left(\dfrac{2}{3}+\dfrac{2}{4}+\dfrac{2}{5}\right)=0\)
b\(\dfrac{2x-1}{x+2015}-\dfrac{4025}{x+2017}=\dfrac{x-2014}{2x-4036}-\dfrac{x-2013}{2x-4030}\) (x thuộc N)
c)\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{4016}{2007}\)
AI GIÚP MK VỚI MK TICK CHO
Bài 1. Chứng tỏ rằng: B=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}< 1\)
Bài 2. so sánh : A=\(\dfrac{2011+2012}{2012+2013}\)
và B=\(\dfrac{2011}{2012}+\dfrac{2012}{2013}\)
Bài 3. Rút gọn : B= \(\left(1-\dfrac{1}{1}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)
Bài 4. Rút gọn biểu thức : A= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
Bài 5. Tìm số nguyên \(\pi\) sao cho \(\pi+5\) chia hết cho \(\pi-2\)
HELP ME!!!! MÌNH TICK CHO HA
Tính giá trị của biểu thức sau:
A=\(a.\dfrac{1}{2}-a.\dfrac{2}{3}+a.\dfrac{3}{4}\)với a=\(\dfrac{-6}{5}\)
B=\(\dfrac{-1}{6}.\)b+\(\dfrac{4}{3}\).b -\(\dfrac{1}{2}\).b với b= \(\dfrac{-3}{7}\)
C=c.\(\dfrac{5}{4}\)+c.\(\dfrac{1}{6}\)-c.\(\dfrac{17}{12}\)với c= \(\dfrac{2013}{2014}\)
Cho A = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}\) ; B = \(\dfrac{2015}{1}+\dfrac{2014}{2}+...+\dfrac{2}{2014}+\dfrac{1}{2015}\)
Tính \(\dfrac{A}{B}\)
1 thực hiện phép tính
a,\(\dfrac{-2}{3}+\dfrac{3}{4}-\dfrac{-1}{6}+\dfrac{-2}{6}-\dfrac{-2}{5}\)
b,\(\dfrac{-2}{3}+\dfrac{-1}{5}+\dfrac{3}{4}-\dfrac{5}{6}-\dfrac{-7}{10}\)
c,\(\dfrac{1}{2}-\dfrac{-2}{5}+\dfrac{1}{3}+\dfrac{5}{7}-\dfrac{-1}{6}+\dfrac{-4}{35}+\dfrac{1}{41}\)
d,\(\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
Bài 1:
a) \(\left[\dfrac{3}{20}-\dfrac{1}{5}x\right].1\dfrac{2}{3}=1\dfrac{1}{4}\)
b)\(\dfrac{-2}{3}.x+\dfrac{1}{5}=\dfrac{3}{10}\)
c)\(\dfrac{-2}{3} \)-\(\dfrac{1}{3}\left(2x-7\right)=\dfrac{3}{2}\)
Câu 1: Tìm x biết
a) \(-\dfrac{2}{3}\)\(\left(x-\dfrac{1}{4}\right)\) = \(\dfrac{1}{3}\left(2x-1\right)\) b) \(\dfrac{1}{5}.2^x+\dfrac{1}{3}.2^{x+1}=\dfrac{1}{5}.2^7+\dfrac{1}{3}.2^8\)
Câu 2: a) Cho A = \(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}......\dfrac{9999}{10000}\)
So sánh A vs 0,01
b) Chứng tỏ rằng: \(\left[\left(1+2+3+....+n\right)-7\right]⋮̸10\)