a, Rút gọn:
\(A=\dfrac{\sqrt{x^3}-x}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x-1}-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}+\sqrt{x}}\\ =\dfrac{x\sqrt{x}-x}{\sqrt{x}-1}-\left(\sqrt{x-1}+\sqrt{x}\right)-\left(\sqrt{x-1}-\sqrt{x}\right)\\ =\dfrac{x\sqrt{x}-x}{\sqrt{x}-1}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}+\sqrt{x}\\ =\dfrac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-2\sqrt{x-1}\\ =x-2\sqrt{x-1}\)