Từ \(ad=bc\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{7a^2+5b^2}{7c^2+5d^2}=\frac{ab}{cd}\Leftrightarrow\frac{7\left(bk\right)^2+5b^2}{7\left(dk\right)^2+5d^2}=\frac{bkb}{dkd}\)
Xét VT \(\frac{7\left(bk\right)^2+5b^2}{7\left(dk\right)^2+5d^2}=\frac{7b^2k^2+5b^2}{7d^2k^2+5d^2}=\frac{b^2\left(7k^2+5\right)}{d^2\left(7k^2+5\right)}=\frac{b^2}{d^2}\left(1\right)\)
Xét VP \(\frac{bkb}{dkd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\left(2\right)\)
Từ (1) và (2) -->Đpcm