+) Nếu \(a>b\Leftrightarrow\dfrac{a}{b}>1\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
+) Nếu \(a=b\Leftrightarrow\dfrac{a}{b}=1\Leftrightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)
+) Nếu \(a< b\Leftrightarrow\dfrac{a}{b}< 1\Leftrightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)
\(a>b\)
\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+n}{b+n}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\)
\(a< b\)
\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+n}{b+n}\)
\(a=b\)
\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+n}{b+n}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+n}{b+n}\)
Chúc bạn học tốt!