Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\) (1)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\) (2)
Từ (1) và (2) => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)