Câu 4: Cho hình vuông ABCD, M thuộc đường chéo AC. Gọi E,F theo thứ tự là hình chiếu của M trên AD, CD. Chứng minh rằng:
a. BM vuông góc EF
b. Các đường thẳng BM, EF, CE đồng quy.
Cho hình vuông ABCD. M là điểm trên đường chéo AC. E,F lần lượt là hình chiếu của M trên AB,AD. Chứng minh rằng a) AEMF là hình vuông b) EF//BD
Cho hình vuông ABCD. Gọi E,F theo thứ tự là trung điểm AB,CD.
a) Tứ giác AECF là hình gì? Vì sao?
b) Gọi H là hình chiếu của D trên CE. Chứng minh AF là đường trung trực của DH và tứ giác AEHF là hình thang cân.
c) DH cắt BC tại K. Chứng minh K là trung điểmBC.
d) FH cắt BC tại G. Tính góc FAG.
Cho hình vuông ABCD, điểm M nằm trên đường chéo AC. Gọi E, F theo thứ tự là các hình chiếu của M trên AD, CD. Chứng minh rằng:
a) BM vuông góc với EF
b) Các đường thẳng BM, AF, CE đồng quy.
Cho hình thang vuông ABCD có góc A= góc D=90 có AB=3,AD=8,CD=5. M,N theo thứ tự là trung điểm BC,AD. Gọi K là hình chiếu của M trên CD . Chứng minh MNDK là hình vuông
Cho hình vuông ABCD. trên tia đối của tia ba lấy điểm E. đường thẳng EC cắt AD tại F, AC cắt BF tại O. chứng minh EO đi qua trung điểm của AF
Cho hình vuông ABCD. Gọi O là giao điểm hai đường chéo. Từ B kẻ đường thẳng song song với AC, cắt DC kéo dài tại E. Gọi F là trung điểm BE. Chứng minh:a, Tam giác BDE vuông cân.b, Tứ giác BOCF là hình vuông.c, Tứ giác CDOF là hình bình hành.d, OB.EF=OD.BFe, DC/DB=CE/BE.
Cho hình vuông ABCD có I thuộc AC. Gọi E, F, H, G lần lượt là hình chiếu của I trên AD, DC, BC, AB. CM:
a, BI vuông góc với EF.
b, Các đường thẳng BI, AF, CE đồng qui.
Cho hình vuông ABCD. Trên AB, AD lấy điểm E,F sao cho AE=DF. CMR: DE⊥CF.