Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a+3b}{2c+3d}=\dfrac{2bk+3b}{2dk+3d}=\dfrac{b}{d}\)
\(\dfrac{2a-3b}{2c-3d}=\dfrac{2bk-3b}{2dk-3d}=\dfrac{b}{d}\)
Do đó: \(\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{2a+3b}{2c+3d}=\dfrac{2bk+3b}{2dk+3d}=\dfrac{b}{d}\)
\(\dfrac{2a-3b}{2c-3d}=\dfrac{2bk-3b}{2dk-3d}=\dfrac{b}{d}\)
Do đó: \(\dfrac{2a+3b}{2c+3d}=\dfrac{2a-3b}{2c-3d}\)
chứng minh a/b= c/d thì 2a+3b/2c+3d=2a+3b/2c-3d
chứng minh a/b= c/d thì 2a+3b/2c+3d=2a-3b/2c-3d
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
cho a/b=c/d chứng minh:
a, a+c/b+d=a-c/b-c b, 2a+3b/2a-3b=2c-3d/2c-3d
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng:
a)\(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b) \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}.CMR\)
a, \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)
b, \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
c, \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
cho ti le thuc a/b = c/d ,chung to rang a,3a + 2b / a = 3c + 2d / c ; b, 2a - 3b/ b = 2c - 3d / b ; c, a/ a-2b = c/c-2d giup minh voi dang can gap
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh:
\(\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)
Giúp mình nha mai phải nộp bài r
Chứng minh rằng nếu a/b=c/d
a. 5a+3b/5a-3b=5c+3d/5c-3d