Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dbrby

cho a,b,c>0 và abc=1

Cmr: \(\frac{1}{\left(a+1\right)^2+b^2+1}+\frac{1}{\left(b+1\right)^2+c^2+1}+\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2}\)

Akai Haruma
31 tháng 7 2019 lúc 16:19

Lời giải:

Đặt biểu thức vế trái là $P$

Áp dụng BĐT AM-GM:
\(\frac{1}{(a+1)^2+b^2+1}=\frac{1}{a^2+2a+1+b^2+1}=\frac{1}{a^2+b^2+2a+2}\leq \frac{1}{2ab+2a+2}=\frac{1}{2}.\frac{1}{ab+a+1}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow P\leq \frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)(1)\)

Từ $abc=1$ ta suy ra :

\(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=\frac{c}{abc+ac+c}+\frac{ac}{bc.ac+b.ac+ac}+\frac{1}{ca+c+1}\)

\(=\frac{c}{1+ac+c}+\frac{ac}{c+1+ac}+\frac{1}{ac+c+1}=\frac{c+ac+1}{c+ac+1}=1(2)\)

Từ \((1);(2)\Rightarrow P\leq \frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$


Các câu hỏi tương tự
dbrby
Xem chi tiết
dbrby
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
dbrby
Xem chi tiết
dbrby
Xem chi tiết
ank viet
Xem chi tiết
ank viet
Xem chi tiết
Nguyễn Thu Ngà
Xem chi tiết
Tran Tuan
Xem chi tiết