\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Ta có: \(a^2+b^2+c^2=1\)
=> \(2\left(ab+bc+ca\right)=-1\)
\(\Leftrightarrow ab+bc+ca=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\dfrac{1}{4}\)
Vì a + b + c = 0
=> \(a^2b^2+b^2c^2+c^2a^2=\dfrac{1}{4}\)
Có: \(\left(a^2+b^2+c^2\right)^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\cdot\dfrac{1}{4}=1\)
\(\Leftrightarrow a^4+b^4+c^4=1-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)