Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dbrby

cho a,b,c>0 . Cmr: \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

(sử dụng AM-GM)

Trần Phúc Khang
4 tháng 7 2019 lúc 16:13

Ta có \(\frac{1}{a^3}+\frac{1}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)

\(\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge\frac{3}{b^2c}\)

..............................

=> \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\ge\frac{1}{a^2b}+\frac{1}{b^2c}+\frac{1}{c^2d}+\frac{1}{d^2a}\left(1\right)\)

Áp dụng bđt cosi ta có

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)

\(\frac{b^2}{c^5}+\frac{1}{b^2c}\ge\frac{2}{c^3}\)

\(\frac{c^2}{d^5}+\frac{1}{c^2d}\ge\frac{2}{d^3}\)

\(\frac{d^2}{a^5}+\frac{1}{d^2a}\ge\frac{2}{a^3}\)

Cộng vế của các bđt trên và kết hợp với (1)

=> ĐPCM

Dấu bằng xảy ra khi a=b=c


Các câu hỏi tương tự
Y
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
dbrby
Xem chi tiết
Ong Seong Woo
Xem chi tiết
Qynh Nqa
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Thị Nguyệt Ánh
Xem chi tiết
Darth Vader
Xem chi tiết