Cho tam giác ABC vuông tại A ,BD là tia phân giác góc B ,kẻ DE vuông góc BC tại góc E. a /chứng minh tam giác ABD bằng tam giác EBD b/ Tính BE biết BC = 15 cm, AC = 12 cm c/ Gọi M ,N lần lượt là trung điểm của AB và BE, K là giao điểm của AN với BD .Chứng minh ba điểm E,K,M thẳng hàng
CHO △ABC ⊥A có AB =6cm AC =8cm trên tia BA lấy điểm D soa cho BD =BC Từ D kẻ DE⊥BC tại E (E∈BC)
a, tính đọ dài cạnh BC
b, CM △BAC=△BEC
c, gọi H là giao điểm của DE và CA .C/M BH là phân giác của góc DBC
Cho tam giác ABC vuông tại A, a b = 6 cm, BC = 10 cm a) tính AC b) tia phân giác của góc B cắt AC tại D, vẽ BH vuông góc với BC tại H. Chứng minh tam giác ABD bằng tam giác HBD
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) chứng minh BD vuông góc với CF c) chứng minh EDF thẳng hàng
cho tam giác abc vuông tại a, trên tia đối của tia ac lấy điểm d sao cho ac= ad. đường trung trực của đoạn ad cắt bd tại e.câu a. cho ab = 8 cm,ac=6cm, tính bc.câu b. cm góc eda = góc ead.câu c. gọi f là trung điểm bc. chứng minh : ab,ce, df đồng quy
Cho Tam giác ABC vuông tai A . Tia pg của góc ABC cắt Ac tại D. Từ D kẻ DH vuông góc với BC tại H.
Gọi K là giao điểm của AB và DH. Cm tam giác KBC là tam giác caann.
cho tg abc vuông tại a ( ab<ac). vẽ ah vuông góc bc tại h. trên tia đối của tia ha lấy d sao cho hd=ha
a. cm tg ahc= tg dhc
b. lấy e thuộc hc sao cho he=hb. cm e là trực tâm của tg adc
c. cm ae+CD>BC
14 tháng 6 2020 lúc 16:48
Cho tam giác ABC vuông tại A có AB= 12cm; BC= 20cm. BM là đường trung tuyến. Trên tia đối của tia MB lấy điểm D sao cho MD = MB
a) Tính AC
b) CM: AB = CD; AC vuông góc với CD
c) CM: góc ABM > góc CBM