P=\(\dfrac{2000a}{ab+2000a+2000}\)
P=\(\dfrac{a^2bc}{ab+a^2bc+abc}\)
P=\(\dfrac{a^2bc}{ab\left(1+ac+c\right)}\)
P=\(\dfrac{ac}{1+ac+c}\)
P=\(\dfrac{2000a}{ab+2000a+2000}\)
P=\(\dfrac{a^2bc}{ab+a^2bc+abc}\)
P=\(\dfrac{a^2bc}{ab\left(1+ac+c\right)}\)
P=\(\dfrac{ac}{1+ac+c}\)
Cho abc = 1. Tính giá trị của biểu thức:
Q = \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
cho biểu thức P=\(\dfrac{3x^2+6x+12}{x^3-8}\)
a) Tìm ĐKXĐ của P
b) Rút gọn biểu thức P
c) Tính giá trị của P với x=\(\dfrac{4001}{2000}\)
Cho a, b, c là các số thực dương thỏa mãn a+b+c=1. Tìm GTNN của biểu thức
S=\(\dfrac{a^2+b^2+2}{a+b-ab}+\dfrac{a^2+c^2+2}{a+c-ac}+\dfrac{c^2+b^2+2}{c+b-bc}\)
Cho abc≠ \(\pm1\) và \(\dfrac{ab+1}{b}=\dfrac{bc+1}{c}=\dfrac{ca+1}{a}\). Chứng minh rằng a=b=c
Cho a,b,c đôi một khác nhau và a+b+c=0. Tính
P= \(\dfrac{ab^{2}}{a^{2}+b^{2}-c^{2}}\)+\(\dfrac{bc^{2}}{b^{2}+c^{2}-a^{2}}\)+\(\dfrac{ca^{2}}{c^{2}+a^{2}-b^{2}}\)
Cho hai biểu thức:
A = \(\dfrac{x+6}{5-x}\) và B = \(\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}+\dfrac{x^2-8x-25}{2x^2-10x}\)
a) Tính giá trị biểu thức A với x thỏa mãn \(x^2+5x=0\)
b) Chứng minh: B = \(\dfrac{x-2}{x-5}\)
c) Tìm giá trị của x để \(B-A=0\)
d) Tìm tất cả giá trị nguyên của x để biểu thức A có giá trị nguyên.
cho abc=2018
tính giá trị của biểu thức M=\(\dfrac{2018a}{ab+2018a+2018}+\dfrac{b}{bc+b+2018}+\dfrac{c}{ac+c+1}\)
Thực hiện phép tính :
\(\dfrac{1}{\left(b-c\right)\left(a^2+ac-b^2-bc\right)}+\dfrac{1}{\left(c-a\right)\left(b^2+ab-c^2-ac\right)}+\dfrac{1}{\left(a-b\right)\left(c^2+bc-a^2-ab\right)}\)
Cho a, b, c > 0 và a+b+c=1. Tìm \(A_{max}=\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ac}{b+ac}}\)