Cho ba số dương \(0\le a\le b\le c\le1\) chứng minh rằng \(\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
Câu 1 :
a) Cho 3 số dương \(0\le a\le b\le c\le1.CMR\dfrac{a}{bc+1}+\dfrac{b}{ac+1}+\dfrac{c}{ab+1}\le2\)
b. Cho a,b,c là 3 cạnh của một tam giác. CMR \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
a) Cho các số a, b, c thỏa mãn abc\(\ne\) 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) =\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{a+c}{b}\)=\(\dfrac{1}{3}\). Tính S= a + b + c + 2021.
Cho a, b, c là các số ≠ 0 thỏa mãn:
\(\dfrac{a+b-2021c}{c}=\dfrac{b+c-2021a}{a}=\dfrac{c+a-2021b}{b}\).
Tính \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
Bài 1 Cho \(a^2\)=bc. Chứng minh rằng
a)\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\) b)\(\dfrac{a^2+c^2}{b^2+a^2}=\dfrac{c}{b}\)
1) Chứng minh rằng \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\)
2) Cho a,b,c là ba số thực khác 0, thỏa mãn điều kiện
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Hãy tính gt biểu thức \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
3) Tìm 1 nghiệm của đa thức P(x) = \(x^3+ax^2+bx+c\)
Biết rằng đa thức có nghiệm và a + 2b + 4c = \(\dfrac{-1}{2}\)
1, Cho tỉ lệ thức \(\dfrac{a+b+c}{a+b-c}\) = \(\dfrac{a-b+c}{a-b-c}\) trong đó b \(\ne\) 0. Chứng minh rằng c=0
Các bạn giúp mk với!
C1: Học sinh lp 7B nhiều hơn Lp 7A là 5 học sinh. biết rằng tỉ số học sinh Lớp 7A và 7B là \(\dfrac{8}{9}\). Tìm số học sinh mỗi lớp.
C2:
a) Cho \(\dfrac{A}{B}=\dfrac{C}{D}\) ( ABCD\(\ne\)0). Chứng minh: \(\dfrac{a^2+b^2}{c^2+b^2}=\dfrac{ab}{cd}\)
b) Cho \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tính giá trị biểu thức M=\((1+\dfrac{a}{b})(1+\dfrac{b}{c})(1+\dfrac{c}{a}).\)