Gọi BE, CF, AN là đường cao của TAM GIÁC ABC
Vì BE//DC⇒BH//DC(1)
CF//BD⇒CD//BH(2)
Từ (1)và(2)⇒BHCD là hình bình hành
Gọi BE, CF, AN là đường cao của TAM GIÁC ABC
Vì BE//DC⇒BH//DC(1)
CF//BD⇒CD//BH(2)
Từ (1)và(2)⇒BHCD là hình bình hành
Bài 1. Cho 4 điểm A, B, C, D. Gọi M, N lần lượt là trung điểm của AD và BC.
a/ Chứng minh rằng vectoMN = 1/2(vectoAB + vecto CD).
b/. Gọi O là điểm trên đoạn MN thỏa OM=2ON. Chứng minh rằng: vectoOA - 2vectoOB -2vectoOC +vectoOD = vceto 0
Bài 2. Cho tam giác ABC có O, G, H lần lượt là tâm đường tròn ngoại tiếp, trọng tâm va trực tâm tam giác.
a/. Gọi D là điểm đối xứng của A qua O. Chứng minh rằng tứ giác BHCD là hình bình hành.
b/. Chứng minh rằng vectoHA + vectoHB + vectoHC = 2vectoHO
vectoOA + vectoOB + vectoOC = vectoOH
c/. Chứng minh rằng ba điểm O, G, H thẳng hàng
Ai biết giải giúp em với^^
Cho tam giác ABC nội tiếp đường tròn tâm O có H là trực tâm. Lấy C đối xứng với O qua BC.Chứng minh: \(\overrightarrow{MC}\)=-\(\overrightarrow{HA}\)
có ai biết làm toán hình ko chỉ mình với
BÀI 1 : Cho hình bình hành ABCD tâm O . chứng minh rằng :
a) vecto CO - vecto OB = vecto BA b) vecto AB - vecto BC = vecto DB
c) vecto DA - vecto DB = vecto OD - vecto OC d) vecto DA - vecto DB + vecto DC = vecto O
BÀI 2 : chứng minh rằng 4 điểm A,B,C,D bất kì ta có :
vecto AC + vecto BD = vecto AD + vecto BC
BÀI 3 : cho tứ giác ABCD . Gọi I , J là trung điểm AD , BC ; P là trung điểm IJ.
a) tính vecto AB + vecto DC + vecto BD + vecto CA
b) CMR : vecto AB + vecto CD = vecto AD + vecto CB , vecto AB + vecto DC = 2IJ
c) CMR : vecto PA + vecto PB + vecto PC + vecto PD = vecto 0 , vecto AB + vecto AC + vecto AD = 4AP
MÌNH CẦN GẤP LẮM GIÚP MÌNH NHA
câu 1: cho tứ giác ABCD. Gọi O là trung điểm của AB.
Chứng minh rằng: \(\overrightarrow{OD}+\overrightarrow{OC}=\overrightarrow{AD}+\overrightarrow{BC}\)
Câu 2: Cho tam giác ABC. Gọi A' là điểm đối xứng của B qua A, B' là điểm dối xứng của C qua B, C' là điểm đối xứng của A qua C. Với một điểm O bất kì, chứng minh rằng:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)
Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng :
a) \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
b) \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Trong mặt phẳng, cho 4 điểm A, B, C, D. Chứng minh rằng : Vecto AD = BD+AC+CB
cho tứ giác ABCD . EF lần lượt là trung điểm AB và CD . G là trung điểm EF với O là điểm tùy ý chứng minh
a) vecto AB +vecto AC+vecto AD = 4 vecto AG
b) vecto GA + vecto GB + vecto GC + vecto GD = vecto 0
c) vecto OG = 1/2 ( vecto OA + vecto OB + vecto OC + vecto OD)
Cho 4 diem A B C D. Lấy I và J là trung diem cua AB và CD. Chứng minh vecto AC+ vecto BD= vecto AD+ vecto BC= 2 vecto IJ
Cho hình chữ nhật ABCD có tâm O. Biết 5 , 12 . AB a AD a a. Chứng minh rằng: AC AB OC OD b. Chứng minh rằng: AB AD BC CD