Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ITACHY

Cho a,b,c \(\ne0\), đôi một khác nhau thoả mãn:

a(y-z)=b(x-z)=c(x+y)

CMR: \(\dfrac{y+z}{a\left(b+c\right)}+\dfrac{z+x}{b\left(a-c\right)}=\dfrac{x-y}{c\left(a-b\right)}\)

 Mashiro Shiina
2 tháng 1 2018 lúc 0:40

Đề sai hay sao á, k rút gọn được.

fix: \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

Cần chứng minh: \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)

Lời giải:

Từ \(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Rightarrow\dfrac{a\left(y+z\right)}{abc}=\dfrac{b\left(z+x\right)}{abc}=\dfrac{c\left(x+y\right)}{abc}\)

\(\Rightarrow\dfrac{y+z}{bc}=\dfrac{z+x}{ac}=\dfrac{x+y}{ab}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z}{bc}=\dfrac{z+x}{ac}=\dfrac{x+y}{ab}=\dfrac{x+y-z-x}{ab-ac}=\dfrac{y+z-x-y}{bc-ab}=\dfrac{z+x-y-z}{ac-ab}=\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{a\left(c-b\right)}\left(đpcm\right)\)


Các câu hỏi tương tự
Nguyen Ngoc Anh Linh
Xem chi tiết
dream XD
Xem chi tiết
Manaka Mukaido
Xem chi tiết
Yến Nguyễn
Xem chi tiết
Jin Yi Hae
Xem chi tiết
* L~O~V~E * S~N~O~W *
Xem chi tiết
dream XD
Xem chi tiết
Dương Huy Vũ
Xem chi tiết
Bất
Xem chi tiết