Lời giải:
Gọi biểu thức đã cho là $A$
Vế đầu tiên:
Vì \(a,b,c>0;a+b+c=1\Rightarrow a,b,c<1\)
Do đó: \(a^2+c< a+c< a+b+c\)
\(\Rightarrow \frac{a}{\sqrt{a^2+c}}>\frac{a}{\sqrt{a+b+c}}\)
Thực hiện tương tự với các phân thức còn lại và cộng theo vế:
\(\Rightarrow \frac{a}{\sqrt{a^2+c}}+\frac{b}{\sqrt{a+b^2}}+\frac{c}{\sqrt{c^2+b}}>\frac{a+b+c}{\sqrt{a+b+c}}=1\)
Vế sau:
Ta có: \(a^2+c=a^2+c(a+b+c)> a^2+ca+c^2\)
\(\Rightarrow \frac{a}{\sqrt{a^2+c}}< \frac{a}{\sqrt{a^2+ca+c^2}}\). Thực hiện tương tự với các phân thức còn lại thu được:
\(\Rightarrow A< \underbrace{\frac{a}{\sqrt{a^2+ac+c^2}}+\frac{b}{\sqrt{b^2+ba+a^2}}+\frac{c}{\sqrt{c^2+bc+b^2}}}_{M}\) \((1)\)
Áp dụng BĐT Cauchy-Schwarz:
\(M^2\leq (1+1+1)\left(\frac{a^2}{a^2+ac+c^2}+\frac{b^2}{b^2+ba+a^2}+\frac{c^2}{c^2+bc+b^2}\right)\)
\(\Leftrightarrow M^2\leq 3\left(3-\frac{c^2+ac}{a^2+ca+c^2}-\frac{ab+a^2}{b^2+ab+a^2}-\frac{bc+b^2}{c^2+bc+b^2}\right)\)
\(\leq 3\left(3-\frac{c^2+ac}{3ac}-\frac{ab+a^2}{3ab}-\frac{bc+b^2}{3bc}\right)\) (AM-GM)
\(\Leftrightarrow M^2\leq 3\left[3-1-\frac{1}{3}(\frac{c}{a}+\frac{a}{b}+\frac{b}{c})\right]\leq 3(3-1-1)\)
(Do theo BĐT AM-GM: \(\frac{c}{a}+\frac{a}{b}+\frac{b}{c}\geq 3\) )
\(\Leftrightarrow M^2\leq 3\Rightarrow M\leq \sqrt{3}\) \((2)\)
Từ \((1),(2)\Rightarrow A<\sqrt{3}< 2\)