Cho a,b,c là các số thực không âm thõa mãn điều kiện (a+b)(b+c)(c+a)=2
Tìm Max của P=(a2+bc)(b2+ca)(c2+ab)
Cho a,b,c là các số thực không âm. Chứng minh
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge4\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\)
Cho a,b,c là các số dương thõa mãn a+b+c=1. Chứng minh
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\ge2\)
2) Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó, ta có: \(a^2+bc\le a^2+ac\le\left(a+c\right)^2\)
Vậy chỉ cần chứng minh
\(\left(a+b\right)^2\left(b+c\right)^2\ge4\left(b^2+ca\right)\left(c^2+ab\right)\)
Lợi dụng AM-GM ngay, ta được
\(4\left(b^2+ca\right)\left(c^2+ab\right)\le\left(b^2+ca+c^2+ab\right)^2=\left(b^2+ab+bc+ca+c^2-bc\right)^2=\left[\left(b+a\right)\left(b+c\right)+c\left(c-b\right)^2\right]\le\left(b+a\right)^2\left(b+c\right)^2\)
Đẳng thức xảy ra khi a=b;c=0 và hoán vị
3) \(VT=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}+\dfrac{\left(c+a\right)\left(c+b\right)}{a+b}\)
Lợi dụng AM-GM, ta được
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(b+c\right)\left(b+a\right)}{c+a}\ge2\left(a+b\right)\)
Tương tự với các BĐT tiếp theo
Cộng vế theo vế rồi rút gọn ta được đpcm
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{3}\)
Câu 1/
Không mất tính tổng quát ta giả sử \(a\le c\le b\) (đừng hỏi tại sao chọn c là số ở giữa. Thích thì mình chọn thôi).
\(\Rightarrow\left(a-c\right)\left(b-c\right)\le0\)
Ta có:\(\left(b+c\right)^2\left(c+a\right)^2=\left(c^2+ab+bc+ca\right)^2\)
\(\ge4\left(c^2+ab\right)\left(bc+ca\right)\)
\(\Rightarrow4=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge4c\left(a+b\right)^2\left(c^2+ab\right)\left(bc+ca\right)\)
\(\Leftrightarrow c\left(a+b\right)^3\left(c^2+ab\right)\le1\)
Ta cần chứng minh:
\(\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)\le c\left(a+b\right)^3\left(c^2+ab\right)\)
\(\Leftrightarrow ab\left[\left(a-c\right)\left(b-c\right)-2ac-2bc\right]\le0\) (đúng)
Vậy ta có ĐPCM
Câu 3/ Ta có:
\(\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\)
\(=\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ca}{c+a}+\dfrac{c\left(a+b+c\right)+ab}{a+b}\)
\(=\dfrac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)}+\dfrac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)}+\dfrac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)}\)
\(\ge\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\left(a+b+c\right)=2\)
Bài 3:
Từ \(a+b+c=1\Rightarrow2a+2b+2c=2\)
\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)
Ta có: \(\dfrac{ab+c}{a+b}=\dfrac{a\left(a+b+c\right)+bc}{b+c}=\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}\)
Nên viết lại BĐT cần chứng minh là:
\(\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{b+c}+\dfrac{\left(a+c\right)\left(a+b\right)}{c+a}\ge2\)
Đặt \(\left\{{}\begin{matrix}a+b=x\\b+c=y\\c+a=z\end{matrix}\right.\left(x,y,z>0\right)\)thì có:
\(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge2\forall\left\{{}\begin{matrix}x,y,z>0\\x+y+z=2\end{matrix}\right.\)
BĐT cuối đúng theo AM-GM