\(VT=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\ge\frac{1}{2}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Dấu "=" xảy ra khi \(a=b=c\)
\(VT=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\ge\frac{1}{2}\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Dấu "=" xảy ra khi \(a=b=c\)
cho các số thực dương a, b,c t/m
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.\) Chứng minh
\(a+b+c\ge\frac{3}{a+b+c}+\frac{2}{abc}\)
Cho ba số thực dương a, b, c. Chứng minh rằng
\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\ge\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a, b, c dương thỏa a + b + c = 3. Cm: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)
Cho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh \(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\ge\frac{3}{4}\)
Cho a,b,c là các số thực dương . CM :\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\)≥\(\frac{a+b+c}{2}\)
Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:
\(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\ge\frac{3}{2}\left(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\right)\)
cho 4 số thực dương a,b,c,d thỏa mãn a+b+c+d=4.CMR:
\(\frac{1}{ab}+\frac{1}{cd}\ge\frac{a^2+b^2+c^2+d^2}{2}\)
Chứng minh: \(\frac{1}{a^2-ab+b^2}+\frac{1}{b^2-bc+c^2}+\frac{1}{c^2-ac+c^2}\ge\frac{12}{\left(a+b+c\right)^2}\)với a,b,c là các số thực dương không âm
a) cho x,y dương. CMR: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
b) cho a+b+c=1 CMR: \(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)