Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Thi Bich Huong

Cho a,b,c là các số dương thỏa mãn: \(a^4+b^4+c^4=3\).

CMR: \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le1\)

Nguyễn Việt Lâm
5 tháng 5 2020 lúc 11:25

Ta có đánh giá sau:

Với \(0< x< \sqrt{3}\) ta luôn có: \(\frac{1}{4-x}\le\frac{x^2+5}{18}\)

Thật vậy, BĐT tương đương:

\(\left(x^2+5\right)\left(4-x\right)\ge18\)

\(\Leftrightarrow-x^3+4x^2-5x+2\ge0\)

\(\Leftrightarrow\left(2-x\right)\left(x-1\right)^2\ge0\) (luôn đúng với \(x\in\left(0;\sqrt{3}\right)\))

Do \(3=a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\Rightarrow0< ab;bc;ca< \sqrt{3}\)

Áp dụng ta có: \(\frac{1}{4-ab}\le\frac{a^2b^2+5}{18}\) ; \(\frac{1}{4-bc}\le\frac{b^2c^2+5}{18}\) ; \(\frac{1}{4-ca}\le\frac{c^2a^2+5}{18}\)

Cộng vế với vế:

\(VT\le\frac{a^2b^2+b^2c^2+c^2a^2+15}{18}\le\frac{3+15}{18}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)


Các câu hỏi tương tự
Thiều Khánh Vi
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Icarus Chune
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
Natsu Dragneel
Xem chi tiết
Nishimiya shouko
Xem chi tiết
Mai Thị Loan
Xem chi tiết
Angela jolie
Xem chi tiết
Doãn Hoài Trang
Xem chi tiết