\(VT\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}+\sqrt{\frac{1}{2}\left(a+c\right)^2}+\sqrt{\frac{1}{2}\left(b+c\right)^2}\)
\(VT\ge\sqrt{2}\left(a+b+c\right)=\sqrt{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(VT\ge\sqrt{\frac{1}{2}\left(a+b\right)^2}+\sqrt{\frac{1}{2}\left(a+c\right)^2}+\sqrt{\frac{1}{2}\left(b+c\right)^2}\)
\(VT\ge\sqrt{2}\left(a+b+c\right)=\sqrt{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Cho a,b,c là 3 số dương có tổng bằng 1. Chứng minh: \(\sqrt{a^2+b^2}+\sqrt{a^2+c^2}+\sqrt{b^2+c^2}\ge\sqrt{2}\)
cho 3 số thực dương a,b,c thỏa mãn \(\dfrac{a}{1+a}+\dfrac{b}{1+b}+\dfrac{c}{1+c}=2\) .Chứng minh:
\(\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{2}\ge\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}+\dfrac{1}{\sqrt{c}}\)
Cho 3 số dương a, b, c thoả mãn: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\). Chứng minh rằng: \(\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}+\dfrac{a^2}{b+c}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho 3 số thực dương a, b, c thoả mãn \(a+b+c\le\sqrt{3}\). Chứng minh rằng: \(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
Cho 3 số thực dương a, b, c thoả mãn: \(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\frac{3}{2}\). Chứng minh rằng: \(a^2+b^2+c^2=\frac{3}{2}\)
Cho 3 số dương a, b, c có tổng bằng 1. Tìm GTNN của \(\sqrt{a^2+2ab+2b^2}+\sqrt{b^2+2bc+2c^2}+\sqrt{c^2+2ca+2a^2}\)
Cho a, b, c là 3 cạnh của 1 tam giác. Chứng minh: \(\sqrt{2}.\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}.\left(a+b+c\right)\)
Cho các số thực dương a,b,c thỏa mãn abc=1.Chứng minh rằng:
\(\frac{1}{\sqrt{a^4-a^3+ab-2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4+c^3+ac+2}}\le\sqrt{3}\)
Cho các số dương a,b,c. Chứng minh
\(\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\le\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{c+a}{ac}}\)
Cho a, b, c là các số thực dương thoả mãn a + b + c = abc. Chứng minh rằng: \(\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+c^2}}\ge\dfrac{3}{2}\)