Nhóm lại :
\(VT=\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)+2\left(\dfrac{1}{b+c-a}+\dfrac{1}{a+b-c}\right)+3\left(\dfrac{1}{a+c-b}+\dfrac{1}{a+b-c}\right)\ge\dfrac{4}{2c}+2.\dfrac{4}{2b}+3.\dfrac{4}{2a}\)
\(=\dfrac{2}{c}+\dfrac{4}{b}+\dfrac{6}{a}=\dfrac{2\left(b+2c\right)}{bc}+\dfrac{6}{a}=\dfrac{2abc}{bc}+\dfrac{6}{a}\)
\(=2\left(a+\dfrac{3}{a}\right)\ge4\sqrt{a.\dfrac{3}{a}}=4\sqrt{3}\)
Dấu = xảy ra khi \(a=b=c=\sqrt{3}\) ( thỏa mãn giả thiết )