Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
MIGHFHF

Cho a;b;c khác 0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

Chứng minh : \(\dfrac{1}{a^n} +\dfrac{1}{b^n}+\dfrac{1}{c^n}+\dfrac{1}{a^n+b^n+c^n}\)

Trần Trung Nguyên
28 tháng 11 2018 lúc 20:32

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\Leftrightarrow\left(ab+ac+bc\right)\left(a+b+c\right)=abc\Leftrightarrow a^2b+ab^2+abc+ac^2+abc+ac^2+abc+b^2c+bc^2=abc\Leftrightarrow a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+2abc=0\Leftrightarrow\left(a^2b+ab^2\right)+\left(a^2c+abc\right)+\left(b^2c+abc\right)+\left(ac^2+bc^2\right)=0\Leftrightarrow ab\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)+c^2\left(a+b\right)=0\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

TH1:a=-b

\(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n}-\dfrac{1}{a^n}+\dfrac{1}{c^n}=\dfrac{1}{c^n}\)(vì n lẻ)

\(\dfrac{1}{a^n+b^n+c^n}=\dfrac{1}{a^n-a^n+c^n}=\dfrac{1}{c^n}\)(vì n lẻ)

Suy ra \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\)

Chứng minh tương tự trong các trường hợp b=-c và c=-a

Vậy \(\dfrac{1}{a^n}+\dfrac{1}{b^n}+\dfrac{1}{c^n}=\dfrac{1}{a^n+b^n+c^n}\)

Trần Trung Nguyên
28 tháng 11 2018 lúc 20:24

Bài này phải thêm dữ kiện n lẻ mình mới làm được


Các câu hỏi tương tự
Võ Thị Kim Dung
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
quangduy
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Hoai Bao Tran
Xem chi tiết
Tiểu Bảo Bảo
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
ITACHY
Xem chi tiết