cho tam giác đều ABC . Trên các cạnh BC, AC của tam giác, lần lượt lấy hai điểm M và N (không trùng với đình tam giác) sao cho BM = CN. Gọi E, F lần lượt là trung điểm của BV và AC, O là giao điểm của AF, BE.
1) chứng minh OM = ON.
2) Gọi I là trung điểm của MN. chứng minh khi M, N di động trên BC, AC thì diểm I nằm trên EF.
3) Tìm vị trí M, N để độ dài MN đạt GTNN.
Cho tam giác ABC đều, có AH là đường cao và M là điểm bất kì thuộc đoạn BC. Kẻ MP và MQ lần lượt vuông góc với AB và AC. Gọi O là trung điểm của AM. Gọi G là trọng tâm tam giác ABC, I là giao điểm của PQ và OH. Chứng minh rằng: 3 điểm M, I, G thẳng hàng
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.
Cho tam giác nhọn ABC, đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.
a. Chứng minh AH ⊥ BC
b. Gọi E là trung điểm của AH. Chứng minh ME là tiếp tuyến của đường tròn (O).
c. Chứng minh MN.OE = 2ME.MO
d. Giả sử AH = BC. Tính tan(BAC)
Cho ΔABC đều cạnh a, gọi O là trung điểm của BC. Trên cạnh AB, AC theo thứ tự lấy M,N sao cho góc MON=60\(^0\)
a, CM:BM.CN=\(\dfrac{a^2}{4}\)
b, Gọi I là giao điểm của BN và OM. Chứng minh bm.in=bi.mn
c, Chứng minh MN luôn tiếp xúc với một đường tròn cố định
d, Tìm vị trí của M,N trên AB,AC để BM+CN đạt giá trị nhỏ nhất
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho tam giác cân ABC (AB=AC), M la điểm di động trên tia AB, N la điểm di động trên tia AC sao cho AM+AN=AB+AC; MN cắt BC tại I.
1. CMR: I là trung điểm của MN và đường trung trực của MN luôn đi qua 1 điểm cố định.
2. CM đường tròn ngoại tiếp tam giác AMN đi qua 1 điểm cố định khác A. Tìm quĩ tích của tâm đường tròn ngoại tiếp đó khi M,N di động.
3. Xác định vị trí của M,N để chu vi tam giác AMN nhỏ nhất.
Cho tam giác ABC nhọn (AB<AC), có các đường cao BN và CM cắt nhau tại H. Gọi O là trung điểm của BC. Chứng minh rằng :
a) Bốn điểm B,M,N,C thuộc cùng một đường tròn .
b)MN//BC
c)ON là tiếp tuyến của đường tròn có đường kính AH
Bài 1: Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn (O). Gọi H là hình chiếu vuông góc của A trên BC. Gọi M và N lần lượt là hình chiếu vuông góc của B và C trên đường kính AD của đường tròn(O)
a) CM tứ giác ABHM,AHNC nội tiếp
b) CM tam giác HMN đồng dạng tam giác ABC
c) Chứng minh HM vuông góc với AC
d) Gọi I là tủng điểm của BC. CM I là tâm đường tròn ngoại tiếp tam giác HMN
Bài 2:Cho đường tròn (O) đường kính AB=2R, Cl à trung điểm của OA và dây MN vuông góc với OA tại C. K là điểm di động trên cung nhỏ MB và H là giao của AK và MN
a) CM tứ giác BCHK nội tiếp
b) Chứng minh tam giác MBN đều
c) Tìm vị trí điểm K trên cung nhỏ MB sao cho KM+KN+KB đạt giá trị lớn nhất và tính giá trị lớn nhất đó theo R