Cho tam giác ABC có ba góc nhọn ., trưc tâm H . Đương thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại D
1. Cm tứ giác BHCD là hình bình hành
2. Gọi M là trung điểm BC, O là trung điểm AD . CM 2OM = AH
3. Gọi G là trọng tâm tam giác ABC. Cm ba điểm H, G , O thẳng hàng
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
bài 1:cho tam giác abc có 3 góc nhọn , trực tâm h . đường thẳng vuông góc với ab kẻ từ b cắt đường thẳng vuông góc với ac kẻ từ c tại d
a) cm tứ giác bhcd là hbh
b)gọi m là tđ bc , o là tđ ad.cm 2om=ah
c)gọi g là trọng tâm tam giác abc. cm h,g,o thẳng hàng
bài 2:cho hình vuông abcd , m là tđ ab, p là giao cm , da
a)cm apbc là hbh và bcdp là hình thang vuông
b)cm 2Sbcdp=3Sapbc
c)gọi n là tđ bc,q là giao dn , cm.cm aq=ab
Bài 3:Cho tam giác abc vuông ở a. lấy điểm m nằm trên cạnh bc, hạ md và me vuông với ab và ac. lấy điểm i đối xứng với d qua a , k đối xứng với e qua m
a)cm diek là hbh
b)cm ik,de , am giao tại 1 điểm
c)Tìm vị trí của m trên bc để adme là hình vuông
d)khi m là chân đường cao hạ từ a xuống bc , gọi j là tđ bc. cm aj⊥de
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
(Các bạn chỉ cần làm ý c và d cho mk thôi!)
Cho tam giác ABC có 3 góc nhọn, trực tâm H. Qua B vẽ đường thẳng vuông góc với AB, qua C vẽ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D
a) CM: tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC, O là trung điểm AD. CM: M là trung điểm của HD và AH=2OM
c) Tìm điều kiện của tam giác ABC để tứ giác BHCD là hình chữ nhật
d) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm H, G, O thẳng hàng
Cho tam giác ABC vuông tại A có AC>AB. Đường cao AH. Từ H kẻ HD\(\perp\)AB (D\(\in\)AB), HE\(\perp\)AC( E\(\in\)AC).
a. Chứng minh: \(\Delta AED\sim\Delta ABC\)
b. Gọi M là điểm đối xứng của B qua H. Từ M kẻ đường thẳng vuông góc với BC cắt cạnh AC tại N. Chứng minh rằng DE song song với BN
d.Chứng minh rằng: \(\dfrac{AB^3}{AC^3}=\dfrac{BD}{CE}\)
---> Giúp minh với ạ, mai mình nộp rồiT.T
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?