Cho tam giác ABC có AB < AC. Trên cạnh AC lấy điểm D sao cho CD = AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng: ΔAEB = ΔCED; AE là tia phân giác trong tại đỉnh A của ΔABC
Giúp mk vs nhq. Mk tik cho. Nếu đc thì vẽ hình giúp mk vs. Thank trc
Cho tam giác ABC cân tại A có d là đường trung trực AB vẽ phân giác AE của góc BAC ( E thuộc BC ) d cắt AE tại O a, AE là đường trung trực của tam giác ABC b, O thuộc đường trung trực của đoạn thẳng AC c, O cách đều 3 đỉnh của tam giác ABC
Cho ABC [ cân tại A. Vẽ AH ⊥BC ( H ∈ BC) . a) Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E . Chứng minh ∆AEB cân. b) Trên các cạnh AB, AC lần lượt lấy các điểm D, F sao cho BD = AF. Chứng minh EF > DF2 . c) Trên tia đối của tia BA lấy điểm K sao cho BA = BK. CMR: CM = CK2
Cho tam giác ABC vuông tại A, AB<AC. Tia phân giác của góc ABC cắt cạnh AC tại D. Kẻ DE vuông góc với BC
a) Chứng minh AB=BE.
b) Chứng minh BD là đường trung trực của AE.
c) Tia ED vắt tia BA tại điểm K. Chứng minh °DKC cân và DA<DC.
d) Chứng minh BD vuông góc với CK .
Cho góc ABC cân tại A. Vẽ AH vuông BC (H thuộc BC).
a)Gọi M là trung điểm AB. Đường thẳng vuông góc với AB tại M cắt AH tại E. Chứng minh tam giác AEB cân.
b) Trên cạnh AB, AC lần lượt lấy các điểm D, F sao cho BD = AF. Chứng minh EF > DF/2
Giup mình với :(
Cho tam giác ABC nhọn có AB<AC, tia phân giác góc BAC cắt BC tại D. Trên AC lấy E sao cho AE=AB. Tia ED cắt AB tại M. Chứng minh: a)Tam giác ABD=tam giác AED. b)AM=AC và AD là đường trung trực của MC. c)BD<DC.
Cho tam giác ABC (AB<AC). Trên AC xác định điểm M sao cho AM=AB. Vẽ đường trung trực của BC và MC cắt nhau tại O. CMR: OA là đường trung trực của BM.
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DEBC (EBC).Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh:
1. ABD =EBD
2. BD là đường trung trực của đoạn thẳng AE
3. AD < DC
4. và E, D, F thẳng hàng.
Bài 5 : Cho ABC vuông tại A. Phân giác của góc ABC cắt AC tại E. Trên cạnh BC lấy điểm D sao cho DB = AB, BE cắt AD tại I.
a ) Chứng minh : ABE = DBE từ đó suy ra ED vuông IBC .
b ) Chứng minh : BE là đường trung trực của đoạn thẳng AD .
c ) So sánh AC và CD .
d ) M là trung điểm của DC , AM cắt CI tại G , DG cắt AC tại K. Chứng minh K là trung điểm của AC .