b) Vì AB=AC
⇒ ∆ABC cân tại A
⇒ AM là đường trung tuyến đồng thời là đường cao, phân giác
⇒ AM⊥BC
a) Xét ∆ABM và ∆ACM có:
AM: cạnh chung
^M1=^M2=90o(Vì AM⊥BC)
MB=MC(gt)
⇒ ∆ABM=∆ACM (c.g.c)
c) Xét ∆AMB và ∆DMC có:
MA=MD(gt)
^M1=^M3(đối đỉnh)
MB=MC(gt)
⇒ ∆AMB=∆DMC (c.g.c)
⇒ ^A1=^D1(t/ứ)
mà 2 góc có vị trí so le trong
⇒ CD//AB