Cho ABC vuông tại B có 60o A , phân giác góc BAC cắt BC ở D. Kẻ DH vuông góc với AC ( H thuộc AC) a. Chứng minh ABD AHD b. Chứng minh HA HC c. So sánh DC và AB d. Gọi I là giao điểm của HD và AB, lấy E là trung điểm của CI. Chứng minh A,D,E thẳng hàng
Cho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
Cho tam giác abc có góc A bằng 90 độ, AB = 6cm AC=8cm kẻ tia phân giác BD (D thuộc AC) kẻ DE vuông góc với BC
a. Tính BC, BE
b. Chứng minh BD là trung trực của AE
c. ED cắt BA tại M. chứng minh tam giác MBC cân
d. Gọi I là trung điểm MC. Chứng minh BDI thẳng hàng( cần gấp)
e. Chứng minh BD > AD
cho tam giác ABC vuông tại A.
a) cho AB=8cm, BC= 10cm, Tính AC?.
b) Tia phân giác của góc C cắt AB tại M. Từ M kẻ MH vuông góc với BC tại H. Chứng minh tam giác BCM= tam giác HCM.
c) Chứng minh AM< MB
Cho tam giác ABC có góc B › góc C. Từ A kẻ đường thẳng vuông góc với BC, ( H thuộc BC )
a, Chứng minh rằng HB ‹ HC
b, Gọi AD là tia phân giác của góc HAC. Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh DH = DE
c, Gọi K là giao điểm của ED và AH. Chứng minh AD vuông góc với CK
Cho tam giác ABC cân tại B ( góc B = 90° ) Kẻ AD vuông góc với BC, CE vuông góc vs AB ( D thuộc cạnh BC , E thuộc cạch AB ) a) Chứng minh ∆ BAD = ∆ BCE b) Gọi F là giao điểm của AD và CE. chứng minh BF là tia phân giác của góc ABC c) chứng minh FA > AC/2
Cho tam giác ABC vuông tại A có AB = 3cm, AC = 4cm; đường phân giác BD
(Dϵ AC). Kẻ DE vuông góc với BC ( Eϵ BC). Gọi F là giao điểm của BA và ED.
a) Tính BC.
b) Chứng minh △ABD = △EBD.
c) Chứng minh BD là đường trung trực của AE.
d) Tính AF và chứng minh AD< DC.
giúp mình với các tình yêu mình cần gấp
cho tam giác ABC có AB< AC và AD là tia phân giác góc D (D thuộc BC) . Kẻ AH vuông góc với BC ( H thuộc BC ) và gọi M là trung điểm của BC . Chứng minh rằng : Tia AD nằm giữa hai tia AH và AM
Cho ∆ABC cân tại A (góc A > 900 ). Từ B kẻ đường thẳng vuông góc với AC tại điểm E, Từ C kẻ đường thẳng vuông góc với AB tại điểm D.Gọi giao điểm của BE và CD là O
a) Chứng minh ∆𝐵𝐶𝐸 = ∆𝐶𝐵𝐷.
b) Gọi I là trung điểm của BC. Chứng minh ∆𝐼𝐸𝐷 là tam giác cân.
c) Chứng minh OI vuông góc với E D.
d) Trên tia CE lấy điểm F sao cho E là trung điểm của CF. So sánh: DBC và EFB