Cho ∆ ABC có 3 góc nhọn nội tiếp (O) các đường cao kẽ từ A và B của A cắt nhau tại H và cắt (O) lần lượt tại D và E. Chứng minh:
a) CD = CE
b) ∆ BHD cân
c) CD = CH
Các đường cao hạ từ A và B của tam giác ABC cắt nhau tại H (góc C khác 90o) và cắt đường tròn ngoại tiếp tam giác ABC lần lượt tại D và E. Chứng minh rằng:
a) CD = CE. b) \(\Delta BHD\) cân. c) CD = CH.
GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N
a) chứng minh tứ giác BMHD, BMEC nội tiếp
b) chứng minh MC là tia phân giác của góc EMD
c) chứng minh H và N đối xứng với nhau qua BC
d) chứng minh OC vuông góc BE
2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e
a) chứng minh tứ giác bdmc, adhm nội tiếp
b) chứng minh ef//md
c) vẽ đường kính bk của (o). chứng minh ah=ck
d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)
3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e
a) chứng minh tứ giác mnhc, bdnc nội tiếp
b) chứng minh h và e đối xứng với nhau qua bc
c) chứng minh oa vuông góc dn
d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng
Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O) có hai đường cao BN và CD cắt nhau tại H. a) Chứng minh tứ giác BDNC nội tiếp, xác định tâm và bán kính đường tròn này. b) Vẽ đường kính AK của đường tròn (O). Chứng minh: BH = CK. c) Chứng minh: AK ⊥ DN
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm . Hai đường cao AM và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại Q và D. Chứng minh:
a. BFHM nội tiếp
b. ACMF nội tiếp
c. BC là tia phân giác của HBQ
Các đường cao AN và BM của tam giác ABC có ba góc nhọn cắt nhau tại H và và cắt (O;R) ngoại tiếp tam giác ABC lần lượt tại D và E. a) Chứng minh CD = CE. b) Chứng minh H và D đối xứng nhau qua BC c) Chứng minh MN song song với DE d) Biết MN/AB = 1/2. Tính MN theo R
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Cho tam giác nhọn ABC nội tiếp đường tròn (O). Hai đường cao AD và BE cắt nhau tại H. Ad cắt đường tròn tại F. Chứng minh: a) Tứ giác ABDE nội tiếp được trong một đường tròn b) DA.DF=DB.DC c) ∆BHF cân
Cho tam giác ABC nội tiếp đường tròn (O) . Hai đường cao BD,CE cắt nhau tại H Và cắt đường tròn lần lượt ở M và N.
Cm: a, Tam giác AMN cân.
b, H và M đối xứng M qua AC và H đối xứng N qua AB.
c, OA vuông góc với DE