Cho a,b,c >0 thỏa \(a^2+b^2+c^2=1.CMR:\)
\(P=\dfrac{bc}{a^2+1}+\dfrac{ca}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{3}{4}\)
Cho a,b,c > 0. Tìm GTNN:
a, \(A=\dfrac{a^2}{2b+5c}+\dfrac{b^2}{2c+5a}+\dfrac{c^2}{2a+5b}\) với abc = 8
b, \(B=\dfrac{b+c}{a^2}+\dfrac{c+a}{b^2}+\dfrac{a+b}{c^2}\) với abc = 1
c, \(C=\dfrac{a+bc}{b+c}+\dfrac{b+ca}{c+a}+\dfrac{c+ab}{a+b}\) với a + b + c = 1
d, \(D=\dfrac{a^3}{2b+3c}+\dfrac{b^3}{2c+3a}+\dfrac{c^3}{2a+3b}\) với \(a^2+b^2+c^2\ge3\)
Cho abc=1
CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\)
1) gpt \(x^2+3x\sqrt{\dfrac{x^2+1}{x}}=10x-1\)
2) ghpt \(\left\{{}\begin{matrix}x^2+y^2+2\left(x+y\right)=6\\xy\left(x+2\right)\left(y+2\right)=9\end{matrix}\right.\)
3) cho a,b,c dương thỏa abc=1
CMR \(\dfrac{2}{a^2\left(b+c\right)}+\dfrac{2}{b^2\left(c+a\right)}+\dfrac{2}{c^2\left(a+b\right)}\ge3\)
cho a,b,c>0
CMR:
1) \(a+b+\dfrac{1}{4}\ge\sqrt{a+b}\)
2) \(\left(a+b+\dfrac{1}{2}\right)^2+\left(b+c+\dfrac{1}{2}\right)^2+\left(c+a+\dfrac{1}{2}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
cho a,b,c>0 thỏa mãn abc=1. chứng minh rằng
\(\dfrac{1}{1+a+b}+\dfrac{1}{1+b+c}+\dfrac{1}{1+c+a}\le\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\)
Cho a,b,c >0 thỏa a+b+c \(\ge9\)
Tìm Min:
\(P=2\sqrt{a^2+\dfrac{b^2}{3}+\dfrac{c^2}{5}}+\sqrt{\dfrac{1}{a}+\dfrac{9}{b}+\dfrac{25}{c}}\)
cho a,b,c dương thỏa \(a^3+b^3+c^3\ge9\)
cmr \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^3\le\left(\dfrac{a^3+b^3+c^3}{3}\right)^2\)
Cho a,b,c > 0 thỏa abc=1.Chứng minh :
\(P=\dfrac{1}{\sqrt{a\left(1+b\right)}}+\dfrac{1}{\sqrt{b\left(1+c\right)}}+\dfrac{1}{\sqrt{c\left(1+a\right)}}>2\)