Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Nhật

Cho a,b,c > 0 thỏa mãn : a+b+c = 1 . Tìm GTNN của biểu thức :

A = \(14\left(a^2+b^2+c^2\right)+\dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}\)

Akai Haruma
17 tháng 9 2017 lúc 16:40

Lời giải:

Xét

\((a+b+c)(a^2+b^2+c^2)=(a^3+b^3+c^3+ab^2+bc^2+ca^2)+a^2b+b^2c+c^2a\)

Áp dụng BĐT AM-GM:

\(\left\{\begin{matrix} a^3+ab^2\geq 2a^2b\\ b^3+bc^2\geq 2b^2c\\ c^3+ca^2\geq 2c^2a\end{matrix}\right.\) \(\Rightarrow (a+b+c)(a^2+b^2+c^2)\geq 3(a^2b+b^2c+c^2a)\)

\(\Leftrightarrow a^2b+b^2c+c^2a\leq \frac{a^2+b^2+c^2}{3}\) (do \(a+b+c=1\))

Do đó, \(A\geq 14(a^2+b^2+c^2)+\frac{3(ab+bc+ac)}{a^2+b^2+c^2}\)

\(\Leftrightarrow A\geq 14[(a+b+c)^2-2(ab+bc+ac)]+\frac{3(ab+bc+ac)}{(a+b+c)^2-2(ab+bc+ac)}\)

\(\Leftrightarrow A\geq 14-28(ab+bc+ac)+\frac{3(ab+bc+ac)}{1-2(ab+bc+ac)}\)

Đặt \(ab+bc+ac=t\)

Theo AM-GM thì \(ab+bc+ac\leq\frac{(a+b+c)^2}{3}\Leftrightarrow t\leq \frac{1}{3}\Rightarrow t\in (0,\frac{1}{3}]\)

Ta có: \(A\geq 14-28t+\frac{3t}{1-2t}\)

Ta sẽ cm rằng \(14-28t+\frac{3t}{1-2t}\geq \frac{23}{3}\Leftrightarrow \frac{14(1-2t)^2+3t}{1-2t}\geq \frac{23}{3}\)

\(\Leftrightarrow 168t^2-159t+42\geq 23-46t\)

\(\Leftrightarrow (3t-1)(56t-19)\geq 0\) \((\star)\)

Vì \(t\leq \frac{1}{3}\Rightarrow 3t-1,56t-19\leq 0\Rightarrow (3t-1)(56t-19)\geq 0\)

Do đó \((\star)\) đúng kéo theo \(14-28t+\frac{3t}{1-2t}\geq \frac{23}{3}\Rightarrow A\geq \frac{23}{3}\)

Vậy \(A_{\min}=\frac{23}{3}\Leftrightarrow a=b=c=\frac{1}{3}\)


Các câu hỏi tương tự
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Mary
Xem chi tiết
Nguyễn Đình Thành
Xem chi tiết
Nguyễn Thùy Trang
Xem chi tiết
guard
Xem chi tiết
Lê Thế Tài
Xem chi tiết
Cindy Phương
Xem chi tiết
guard
Xem chi tiết
guard
Xem chi tiết