Cho a;b;c>0.CMR:
\(\sqrt[3]{\frac{a^2+bc}{abc\left(b^2+c^2\right)}}+\sqrt[3]{\frac{b^2+ca}{abc\left(c^2+a^2\right)}}+\sqrt[3]{\frac{c^2+ab}{abc\left(a^2+b^2\right)}}\ge\frac{9}{a+b+c}\)
cho a,b,c > 0 thỏa mãn \(a^2+b^2+c^2=3\)
CMR \(P=\sqrt{\dfrac{9}{\left(a+b\right)^2}+c^2}+\sqrt{\dfrac{9}{\left(b+c\right)^2}+a^2}+\sqrt{\dfrac{9}{\left(c+a\right)^2}+b^2}\ge\dfrac{3\sqrt{13}}{2}\)
cho a,b,c>0. chứng minh rằng:
\(\sqrt{\frac{\left(a^2+bc\right)\left(b+c\right)}{a\left(b^2+c^2\right)}}\) +\(\sqrt{\frac{\left(b^2+ac\right)\left(a+c\right)}{b\left(a^2+c^2\right)}}\) +\(\sqrt{\frac{\left(c^2+ab\right)\left(a+b\right)}{c\left(a^2+b^2\right)}}\) \(\ge\) \(3\sqrt{2}\)
cho a,b,c là các số ko âm tm a+b+c=1006 cmr
\(\sqrt{2012a+\frac{\left(b-c\right)^2}{2}}+\sqrt{2012b+\frac{\left(c-a\right)^2}{2}}+\sqrt{2012c+\frac{\left(a-b\right)^2}{2}}\le2012\sqrt{2}\)
Cho a, b, c là các số thực dương. Chứng minh rằng :
\(\frac{a}{\sqrt{4a^2+\left(b+c\right)^2}}+\frac{b}{\sqrt{4b^2+\left(c+a\right)^2}}+\frac{c}{\sqrt{4c^2+\left(a+b\right)^2}}\le\frac{3\sqrt{2}}{4}\)
cho a b c > 0. Chứng minh các bất đẳng thức :
1, \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
2, \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{16}{a+b+c+d}\)
3, ( 1+a+b) (a+b+ab) \(\ge9ab\)
4, \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\)
5, \(3a^3+7b^3\ge9ab^2\)
6, \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\)
C/m các BĐT sau :
\(1.a^3-3a+4\ge b^3-3b
\)
\(2,\frac{1}{\frac{1}{a+c}+\frac{1}{b+d}}\ge\frac{1}{\frac{1}{a}+\frac{1}{b}}+\frac{1}{\frac{1}{c}+\frac{1}{d}}\) với a, b, c, d>0
\(3,a^3+b^3\ge\frac{1}{4};a+b\ge1\)
4, \(a^3+b^3\le a^4+b^4;a+b\ge2\)
5, \(\left(a+b\right)\left(a^3+b^3\right)\left(a^5+b^5\right)\le4\left(a^9+b^9\right);a,b\ge0\)
6, \(\frac{c+a}{\sqrt{a^2+c^2}}\ge\frac{c+b}{\sqrt{c^2+b^2}};a>b>0,c>\sqrt{ab}\)
Các bn làm đc bài nào thì giúp mk với, cảm ơn ạ !
Cho \(\left\{{}\begin{matrix}a,b,c>0\\\sqrt{a}+\sqrt{b}+\sqrt{c}\ge3\sqrt{2}\end{matrix}\right.\) CMR :
\(S=\sqrt[3]{a^2+\frac{1}{b^2}}+\sqrt[3]{b^2+\frac{1}{c^2}}+\sqrt[3]{c^2+\frac{1}{a^2}}\ge3.\sqrt[3]{\left(\frac{17}{4}\right)^2}\)
@Nguyễn Việt Lâm
@Lê Thị Thục Hiền
Cho ba số thực không âm \(a;b;c\) và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). Chứng minh rằng :
\(\sqrt{\left(a+b+1\right).\left(c+2\right)}+\sqrt{\left(b+c+1\right).\left(a+2\right)}+\sqrt{\left(c+a+1\right).\left(b+2\right)}\ge9\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn giúp đỡ, em cám ơn rất nhiều ạ!