Cho 3 số thực dương a,b,c thỏa mãn:
\(7\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=6\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)+2021\)
Tìm giá trị lớn nhất của P=\(\dfrac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\dfrac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\dfrac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
cho a,b,b là các số dương và a2+b2+c2=1. Tìm GTNN của biểu thức:
P=\(\dfrac{bc}{a}\)+\(\dfrac{ac}{b}\)+\(\dfrac{ab}{c}\)
mong mọi người giúp mình câu này
cho a,b,c >0 có \(\dfrac{1}{ab}+\dfrac{1}{ac}+\dfrac{1}{bc}=1\) tìm giá trị lớn nhất của \(\dfrac{a}{\sqrt{bc\left(a^2+1\right)}}+\dfrac{b}{\sqrt{ca\left(b^2+1\right)}}+\dfrac{c}{\sqrt{ab\left(c^2+1\right)}}\)
Cho a, b, c > 0, a + b + c = 3. Tìm giá trị nhỏ nhất của
M = \(\dfrac{ab}{c^2\left(a+b\right)}+\dfrac{ac}{b^2\left(a+c\right)}+\dfrac{bc}{a^2\left(b+c\right)}\)
Cho a,b,c là ba số dương thỏa mãn a + b + c =6 Tìm giá trị lớn nhất của
biểu thức: A = \(\dfrac{ab}{a+3b+2c}\)+\(\dfrac{bc}{b+3c+2a}\)+\(\dfrac{ca}{c+3a+2b}\)
Cho 3 số \(a\), \(b\), \(c\) thỏa mãn \(c^2\ge a^2+b^2\). Tìm giá trị nhỏ nhất của \(M=\dfrac{a^2}{c^2}+\dfrac{c^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}+2017\).
Cho a,b,c >0 thỏa mãn : \(a^2+b^2+c^2=abc\\\) .Tìm max của biểu thức :
\(P=\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\)
Cho a;b;c là các số thực dương thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm Min của: \(A=\dfrac{a^3}{bc+a^2}+\dfrac{b^3}{ac+b^2}+\dfrac{c^3}{ab+c^2}\)
Cho a,b,c là cái số thực dương thỏa mãn a + b + c = 1 . Tìm giá trị nhỏ nhất của biểu thức : Q = \(\dfrac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\dfrac{\left(1-a\right)^2}{\sqrt{2\left(c+a\right)^2+ca}}\) + \(\dfrac{\left(1-b\right)^2}{\sqrt{2\left(a+b\right)^2+ab}}\)