Áp dụng BĐT: x2+y2+z2\(\ge\)xy+yz+zx ( với x,y,z >0)
Ta có\(\dfrac{a^8+b^8+c^8}{a^3b^3c^3}\)\(\ge\)\(\dfrac{a^4b^4+b^4c^4+c^4a^4}{a^3b^3c^3}\)
\(\ge\)\(\dfrac{a^4b^2c^2+b^4c^2a^2+c^4a^2b^2}{a^3b^3c^3}\)=\(\dfrac{a^2+b^2+c^2}{abc}\)\(\ge\)\(\dfrac{ab+bc+ca}{abc}\)
= \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\) a=b=c