a) Đặt (a, a - b) = d \(\Rightarrow\left\{{}\begin{matrix}a⋮d\\a-b⋮d\end{matrix}\right.\Rightarrow a-\left(a-b\right)=b⋮d\Rightarrow d\inƯC\left(a,b\right)\Rightarrow d=1\) (đpcm)
b) Giả sử ab và a + b cùng chia hết cho một số nguyên tố d.
Vì ab \(⋮\) d nên trong hai số a và b có một số chia hết cho d. Không mất tính tổng quát giả sử \(a⋮d\Rightarrow a+b-a⋮d\Rightarrow b⋮d\Rightarrow d\inƯC\left(a,b\right)\Rightarrow d=1\)(đpcm)