\(\dfrac{a}{-b}=\dfrac{a\cdot\left(-1\right)}{\left(-b\right)\cdot\left(-1\right)}=\dfrac{-a}{b}\)
\(\dfrac{-a}{-b}=\dfrac{-a\cdot\left(-1\right)}{-b\cdot\left(-1\right)}=\dfrac{a}{b}\)
\(\dfrac{a}{-b}=\dfrac{a\cdot\left(-1\right)}{\left(-b\right)\cdot\left(-1\right)}=\dfrac{-a}{b}\)
\(\dfrac{-a}{-b}=\dfrac{-a\cdot\left(-1\right)}{-b\cdot\left(-1\right)}=\dfrac{a}{b}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)
Chứng minh rằng \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
bằng 3 các(giả thiết a khác b;c khác d và mỗi số a,b,c,d khác 0)
Cho các số hữu tỉ \(x=\dfrac{a}{b};y=\dfrac{c}{d};z=\dfrac{a+c}{b+d}\left(a,b,c,d\in Z;b>0;d>0\right)\)
Chứng minh rằng nếu x < y thì x < y < z .
1 Chứng tỏ rằng :
a) 0,(43) + 0,(56) = 1
b) 0,(333) . 3 = 1
2. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
3. Tìm a,b,c
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a + 2b - 3c = -20
Bài 1 : Cho các số thực a,b,c khác 0 thỏa mãn \(a+b+c=2;a^2+b^2+c^2=4\) và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Chứng minh rằng : xy+yz+zx=0
Bài 2 : Cho x khác -1;0;1 thỏa mãn \(\dfrac{a}{x-1}=\dfrac{b}{x}=\dfrac{c}{x+1}\) Chứng minh rằng : \(4\left(a-b\right)\left(b-c\right)=\left(a-c\right)^2\)
Bài 3 : Cho các số thực a,b,c khác 0 thỏa mãn \(\dfrac{x}{a+2b-c}=\dfrac{y}{2a+b+c}=\dfrac{z}{4b+c-4a}\) . Chứng minh rằng : \(\dfrac{a}{x+2y-z}=\dfrac{b}{2x+b+c}=\dfrac{c}{4y+z-4x}\)
GIÚP MÌNH ĐI CHIỀU 1 GIỜ ĐI HOK RỒI !!!
Cho x,y,z,a,b,c khác 0 và \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\).Chứng minh rằng
a) \(\dfrac{a^2}{x}=\dfrac{b^2}{y}=\dfrac{c^2}{z}=\dfrac{\left(a+b+c\right)^2}{x+y+z}\)
b) \(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)}=\dfrac{1}{a^2+b^2+c^2}\)
Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) với a,b,c,x,y,z \(\ne\)0. Chứng minh rằng : \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Cho \(M=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\) với a, b, c > 0
Chứng tỏ rằng M không phải là số nguyên
Cho x,y,z,a,b,c khác 0 và \(\dfrac{x^2-yz}{a}=\dfrac{y^2-xz}{b}=\dfrac{z^2-xy}{c}\).Chứng minh rằng \(\dfrac{a^2-bc}{x}=\dfrac{b^2-ac}{y}=\dfrac{c^2-ab}{z}\)
a) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ( a + 2c )( b + d ) = ( a + c )( b + 2d )
b) Cho \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Chứng minh rằng biểu thức sau có giá trị nguyên : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)