Cho \(a,b\in\) N* thỏa \(\frac{a+1}{b}+\frac{b+1}{a}\in Z\). Chứng minh ước chung lớn nhất của a, b không lớn hơn \(\sqrt{a+b}\)
cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1 và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
Chứng minh rằng ít nhất 1 trong 3 số a,b,c là bình phương của 1 số hữu tỉ
Cho a, b, c thỏa mãn:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
Chứng minh (a+b)(b+c)(c+a) = 0
Cho 3 số thực a,b,c \(\ne0\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).Chứng minh rằng trong 3 số a,b,c luôn có 2 số đối nhau ..
Từ đó suy ra \(\forall n\in Z\) lẻ thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
HELP...... MAI MÌNH PHẢI NỘP RỒI
MÌNH CẢM ƠN
Cho a,b,c>0 thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).Chứng minh rằng: \(a.b^2.c^3\le1\)
Câu 1:Cho dãy tỉ số:\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\).
Tính: M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Câu 2:S= abc+bca+cab (abc, bca, cab là các số hạng)
Chứng minh: S không phải là số chính phương.
Câu 3: Cho 9 đường thẳng trong đó không có 2 đường thẳng nào song song. CMR: Ít nhất cũng có 2 đường thẳng mà góc nhọn giữa chúng không nhỏ hơn 20o.
Help me- Mai mình nộp rồi!
Cho a>0 và b>0. Chứng minh rằng: (1/a +1/b ) x (a+b) >= (lớn hơn bằng) 4.
Câu 1: (4 điểm)
1. Cho phân thức:\(\left(\frac{3x^2+3}{x^3-1}-\frac{x-1}{x^2+x+1}-\frac{1}{x-1}\right)\times\frac{x-1}{2x^2-5x+5}\)
a) Rút gọn B. b) Tìm giá trị lớn nhất của B.
2. Cho a, c, b là 3 số hữu tỷ khác 0 thỏa mãn a + b + c = 0. Chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\) Từ đó suy ra \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\) là bình phương của một số hữu tỷ.
a) Cho a, b, c > 0. Chứng minh nếu \(\frac{a}{b}< 1\) thì \(\frac{a+c}{b+c}>\frac{a}{b}\)
b) a, b, c là cạnh tam giác. Chứng minh \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)