Bài tập cuối chương 5

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho AB là một dây bất kì (không phải là đường kính) của đường tròn (O; 4 cm). Gọi C và D lần lượt là các điểm đối xứng với A và B qua tâm O.

a) Hai điểm C và D có nằm trên đường tròn (O) không? Vì sao?

b) Biết rằng ABCD là một hình vuông. Tính độ dài cung lớn AB và diện tích hình quạt tròn tạo bởi hai bán kính OA và OB.

datcoder
21 tháng 10 lúc 21:33

a) A thuộc (O), C là điểm đối xứng của A qua O nên C thuộc (O);

B thuộc (O), D là điểm đối xứng của B qua O nên D thuộc (O).

b) ABCD là hình vuông nên AC và BD vuông góc

Do đó: \(\widehat {{\rm{AOB}}} = 90^\circ \). Suy ra sđ \(\overset\frown{\text{AB}}=90{}^\circ \)

Suy ra: số đo cung lớn AB là: \(360^\circ - 90^\circ = 270^\circ \).

Độ dài cung lớn AB là: \(\frac{n}{{180}}.\pi R = \frac{{270}}{{180}}.4\pi  = 6\pi \)(cm)

Diện tích hình quạt tròn tạo bởi hai bán kính OA và OB là:

\(\frac{{\rm{n}}}{{360}}.{\rm{\pi }}{{\rm{R}}^2} = \frac{{90}}{{360}}{\rm{.\pi }}{\rm{.}}{{\rm{4}}^2} = 4{\rm{\pi }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\)