Cho các số thực không âm a,b. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{\left(a^2+2b+3\right).\left(b^2+2a+3\right)}{\left(2a+1\right).\left(2b+1\right)}\)
Cho các số thực a, b, c, x thay đổi sao cho thỏa mãn hệ phương trình
\(\left\{{}\begin{matrix}x+a+b+c=7\left(I\right)\\x^2+b^2+c^2+a^2=13\left(II\right)\end{matrix}\right.\)
- Tìm GTNN, GTLN của x và tìm giá trị biểu thức A biết \(A=Min_x+Max_x\)
cho a,b,c là các số thực dương thay đổi bất kì
cm:
\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}+\dfrac{\left(a+2b+c\right)^2}{2b^2+\left(c+a\right)^2}+\dfrac{\left(a+b+2c\right)^2}{2c^2+\left(a+b\right)^2}\le8\)
Cho a,b,c là các số thực dương thay đổi .Tìm GTNN của biểu thức:
\(P=\left(\frac{a}{a+b}\right)^2+\left(\frac{b}{b+c}\right)^2+\frac{c}{4a}\)
Cho a,b là các số thực dương thỏa mãn a+b=1
Tìm GTNN của biểu thức A=\(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\)
Cho a, b là các số thực thoả mãn điều kiện:
\(\left(a+\sqrt{1+b^2}\right)\left(b+\sqrt{1+a^2}\right)=1\)
Tính giá trị của biểu thức: \(S=\left(a^3+b^3\right)\left(a^7b-5a^2b^4+21ab^5+73\right)+320\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho 3 số dương a, b, c thay đổi thỏa mãn: \(a^2+b^2+c^2=3\). Tìm giá trị nhỏ nhất của biểu thức: \(P=2.\left(a+b+c\right)+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho 3 số thực a,b,c sao cho phương trình ax2+bx+c=0 có 2 nghiệm thuộc đoạn (0;1). Tìm giá trị lớn nhất của biểu thức \(P=\frac{\left(a-b\right)\left(2a-b\right)}{a\left(a-b+c\right)}\)