Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
khong có

 

Cho a,b là các số thực dương thỏa mãn a+b=1

Tìm GTNN của biểu thức A=\(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\)

Nguyễn Việt Lâm
27 tháng 2 2021 lúc 20:58

\(A=ab+\dfrac{1}{ab}+2=ab+\dfrac{1}{16ab}+\dfrac{15}{16}ab+2\)

\(A\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{15}{4\left(a+b\right)^2}+2=\dfrac{25}{4}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

Yeutoanhoc
27 tháng 2 2021 lúc 21:08

`A=(a+1/b)(b+1/a)`

`=ab+1+1+1/(ab)`

`=2+ab+1/(16ab)+15/(16ab)`

Áp dụng cosi

`=>ab+1/(16ab)>=1/2`

`ab<=(a+b)^2/4=1/4`

`=>16ab<=4`

`=>15/(16ab)>=15/4`

`=>A>=15/4+1/2+2=25/4`

Dấu "=" xảy ra khi `a=b=1/2`


Các câu hỏi tương tự
Mai Tiến Đỗ
Xem chi tiết
Tống Cao Sơn
Xem chi tiết
em ơi
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
dia fic
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
dia fic
Xem chi tiết