Xét: a>b
=>a-b>0
=>|a-b|=a-b
=>a-b<1
=>a<b+1
=>a/b<b+1/b
=>a/b<1+1/b
Vì:b>1
=>1/b<1
=>a/b<1+1
=>a/b<2
Mà: a>b
=>b/a<1
=>a/b+b/a<1+2
=>a/b+b/a<3
Ngược lại với b>a
Xét:a=b
=>a/b+b/a=2
=>a/b+b/a<3
Chắc giờ bạn làm đc rồi nhỉ
Xét: a>b
=>a-b>0
=>|a-b|=a-b
=>a-b<1
=>a<b+1
=>a/b<b+1/b
=>a/b<1+1/b
Vì:b>1
=>1/b<1
=>a/b<1+1
=>a/b<2
Mà: a>b
=>b/a<1
=>a/b+b/a<1+2
=>a/b+b/a<3
Ngược lại với b>a
Xét:a=b
=>a/b+b/a=2
=>a/b+b/a<3
Chắc giờ bạn làm đc rồi nhỉ
Cho 3 số thực a,b,c thỏa mãn \(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}\)
Chứng minh: \(4\cdot\left(a-b\right)\cdot\left(b-c\right)=\)\(\left(a-c\right)^2\)
Tính giá trị của các biểu thức :
\(A=-5,13:\left(5\dfrac{5}{28}-1\dfrac{8}{9}.1,25+1\dfrac{16}{63}\right)\)
\(B=\left(3\dfrac{1}{3}.1,9+19,5:4\dfrac{1}{3}\right)\left(\dfrac{62}{75}-\dfrac{4}{25}\right)\)
Thực hiện các phép tính :
a) \(\left(\dfrac{9}{25}-2,18\right):\left(3\dfrac{4}{5}+0,2\right)\)
b) \(\dfrac{5}{18}-1,456:\dfrac{7}{25}+4,5.\dfrac{4}{5}\)
Cho a,b,c,d là 4 số nguyên dương bất kì
Chứng tỏ : \(\dfrac{a}{a+b+c}\)+\(\dfrac{b}{a+b+d}\)+\(\dfrac{c}{b+c+d}\)+\(\dfrac{d}{a+c+d}\)không phải là số nguyên
1/ cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng:
a) \(\frac{a.b}{c.d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\frac{a.d}{c.b}=\frac{\left(a+b\right).\left(a-b\right)}{\left(c+d\right).\left(c-d\right)}\)
2/ cho a.b=c2 chứng minh: \(\frac{a}{b}=\frac{\left(2.a+3.c\right)^2}{\left(2.c\right)+\left(3.b\right)^2}\)
Tính
a) \(\left(\dfrac{9}{25}-2,18\right):\left(3\dfrac{4}{5}+0,2\right)\)
b) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,25+\dfrac{16}{21}\)
1)Tính tỉ số \(\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2007}+\dfrac{1}{2008}+\dfrac{1}{2009}}{\dfrac{2008}{1}+\dfrac{2007}{2}+\dfrac{2006}{3}+...+\dfrac{2}{2007}+\dfrac{1}{2008}}\)
2) chứng minh: \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+..+\dfrac{19}{9^2.10^2}< 1\)
Cho a, b,c thỏa mãn: \(\frac{1}{a+b+c}=\frac{a+4b-c}{c}=\frac{b+4c-a}{a}\frac{c+4a-b}{b}\)
Tính P = \(\left(2+\frac{a}{b}\right)\left(3+\frac{b}{c}\right)\left(4+\frac{c}{a}\right)\)
So sánh các số thực :
a) \(2,\left(15\right)\) và \(2,\left(14\right)\)
b) \(-0,2673\) và \(-0,267\left(3\right)\)
c) \(1,\left(2357\right)\) và \(1,2357\)
d) \(0,\left(428571\right)\) và \(\dfrac{3}{7}\)