Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
=>ΔABC cân tại A
Xét (O) có
AB,AC là các tiếp tuyến
nên AB=AC
=>ΔABC cân tại A
cho tam giác abc nội tiếp đường tròn tâm o. tia phân giác của góc abc cắt đường tròn tâm o tại d. tiếp tuyến tại d của đường tròn tâm o cắt 2 đường thẳng ab và ac lần lượt tại e và f. a, chứng minh ef song song với cb. b, chứng minh ab.af=ac.ae=ad^2
Cho hình thoi ABCD có góc B bằng 60o qua D vẽ 1 đường thẳng nằm ngoài hình thoi cắt đường thẳng AD và BC tại E và F. Gọi K là giao điểm của AFvà CE. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác KDF
Cho nửa đường tròn (O,R) đường kính BC. Vẽ hai tiếp tuyến Bx và Cy (B,C là hai tiếp tuyến)Gọi A là điểm thuộc đường tròn sao cho cung AB nhỏ hơn cung AC, tiếp tuyến tại điểm A cắt Bx,Cy lần lượt tại D và E.
a)Cm:BD+CE=DE
b)Cm:góc DOE =90 độ và BD.CE=R mũ 2
c)CD cắt BE tại I.Vẽ AH vuông góc BC(H thuộc BC).Cm ba điểm A,I,H thẳng hàng
Cho đường tròn O, đường kính AB. Lấy C thuộc (O) (C khác A và B). Tiếp tuyến tại A của đường tròn O cắt BC tại M.
a, CM: tam giác ABC vuông và BA2=BC.BM b, Gọi K là trung điểm của MA. CM:KC là tiếp tuyến của đường tròn O
cho nửa đường tròn đường kính ab. c là một điểm thộc nửa ddường tròn, bd phân giác góc abc. bd cắt ac tại e, ad cắt bc tại g. h là điểm đối xưngs của e qa d
a) tứ giác ahge là hình gì
b)chưngs minh ah là tiếp tuyến của đường tronf đường kính ab
cho tam giác ABC nội tiếp đường tròn tâm O. gọi P,Q,R lần lượt là trung điểm của các cung nhỏ BC,CA,AB
a) CMR: AP vuông góc với QR
b) AB cắt DE tại I. CMR: Tam giác CBI cân tại B
. Cho đường tròn (O; R) và (O’; R’) cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm P, kẻ tiếp tuyến PT với đường tròn (O) và tiếp tuyến PE với đường tròn (O’) với T và E là hai tiếp điểm. Chứng mình rằng PTE PET
4.Cho đường tròn (O) đường kính BC. Lấy điểm A bất kì nằm trên đường tròn
( AB> AC ) . Gọi M là giao điểm của tiếp tuyến tại A với đường thẳng BC. Chứng
minh rằng: gócBAO = góc CAM
5. Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến kẻ từ A của ( O')
cắt (O) tại C và tiếp tuyến tại A của (O) cắt (O') tại D. Chứng minh rằng:
góc CBA = góc DBA
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Kẻ tiếp tuyến chung CD (CD gần B hơn A) của hai đường tròn. C thuộc (O) và D thuộc (O’). Gọi I là giao điểm của AB và CD, E là điểm đối xứng với B qua I. Chứng minh rằng: B, C, E, D là 4 đỉnh của một hình bình hành.