\(a^3-3ab^2=5=>(a^3-3ab^2)^2=25\)
\(b^3-3a^2b=10=>(b^3-3a^2b)^2=100\)
=>\(a^6-6a^4b^2+9a^2b^4\)=25
\(b^6-6a^2b^4+9a^4b^2=100\)
=>\(a^6+3a^2b^4+3a^4b^2+b^6=125\)
=>(\(a^2+b^2)^3=125\)
=>\(a^2+b^2=5\)
=>2016\(a^2+2016b^2=10080\)
\(a^3-3ab^2=5=>(a^3-3ab^2)^2=25\)
\(b^3-3a^2b=10=>(b^3-3a^2b)^2=100\)
=>\(a^6-6a^4b^2+9a^2b^4\)=25
\(b^6-6a^2b^4+9a^4b^2=100\)
=>\(a^6+3a^2b^4+3a^4b^2+b^6=125\)
=>(\(a^2+b^2)^3=125\)
=>\(a^2+b^2=5\)
=>2016\(a^2+2016b^2=10080\)
Phân tích đa thức thành nhân tử
a(b3-c3)+b(c3-a3)+c(a3-b3)
Phân tích thành nhân tử :
a. (a + b)(a2 - b2) + (b - c)(b2 - c2) + (c + a)(c2 - a2)
b. a3 (b - c) + b3(c - a) + c3 (a - b)
c. a3 (c - b2) + b3 (a -c3) + c3 (b - a2) + abc(abc - 1)
d.a ( b + c )2 ( b - c ) + b ( c + a )2 (c - a ) + c ( a + b )2 (a - b )
e. a ( b + c )3 + b ( c - a )3 + c ( a - b )3
f. a2 b2 ( a - b ) + b2 c2 ( b - c ) + c2 a2( c - a )
g. a ( b2 + c2) + b ( c2 + a2 ) + c ( a2 + b2) - 2abc - a3 - b3 - c3
h. a4 ( b - c ) + b4 ( c - a ) + c4 ( a - b )
a) 4x4-8x3+4x2
b) 5x2-20y2-5x+10y
c) mx2-8mx+16m-4my2
d) m6-m4+2m3+2m2
e) x2-4x-12
f) 6x2-5x-1
g) x2-2xy-3y2
h) x4+4y4
i) a(b3-c3)+b(c3-a3)+c(a3-b3)
CÁC ANH CHỊ GIÚP EM VỚI Ạ.EM CẦN GẤP TRONG TỐI NAY.EM CẢM ƠN TRC Ạ:3!!!!
1. a3 + b3 + c3 - 3abc
2. a10 + a5 + 1
3. a8 + a + 1
4. a8 + a7 + 1
5. a16 + a8b8 + b16
6. (a + 1)(a + 3)(a + 5)(a + 7) + 15
7. 4x2y2 (2x + y) + y2z2 ( z - y) + x2z2 ( 2x + z)
8. be ( a + b)(b - c) - ac(b + d)(a - c) + ab(c + d(a - b)
9. (x - y)3 + (y - z)3 + (z - x)3
10. x4 + 6x3 + 7x2 - 6x + 1
Cho x + y = 10 và xy = 30. Tính (x-y)^2
Cho x+y=5 và xy=6. Tính x^3+y^3
chứng minh rằng :
a,5^6-10^4 chia hết 9
b,5+5^2+5^3+5^4+5^5+5^6 chia hết cho 31
chứng minh 10^6-5^7 chia hết cho 53
B1: chứng minh với mọi n thuộc N thì:
n4 + 6n3 + 11n2 +6n chia hết cho 24
B2: chứng minh với mọi n chẵn nhỏ hơn 4 và n thuộc Z thì
n4 + 4n3 - 4n2 + 16n chia hết cho 384
B3: tìm x, y sao cho
a) x + 2y = xy + 2
b) xy = x + y