Ta có: \(A=1-3+3^2-3^3+...-3^{2017}+3^{2018}\)
\(=>3A=3-3^2+3^3-3^4+...-3^{2018}+3^{2019}\)
\(=>3A+A=1+3^{2019}\)
\(=>4A-1=3^{2019}\)
=>4A-1 là một lũy thừa của 3 =>(đpcm)
Ta có: \(A=1-3+3^2-3^3+...-3^{2017}+3^{2018}\)
\(=>3A=3-3^2+3^3-3^4+...-3^{2018}+3^{2019}\)
\(=>3A+A=1+3^{2019}\)
\(=>4A-1=3^{2019}\)
=>4A-1 là một lũy thừa của 3 =>(đpcm)
chứng minh rằng:
1+21+22+23+......+22017+22018 chia hết cho 3
chứng minh rằng A là lũy thừa của 2
A = 4+ 2^2 + 2^3 + .... + 2^2021
Câu 1
A = (x+2017).(x+2018).Chứng tỏ rằng A luôn chia hết cho2
Câu 2
Cho C=3^10+3^11+3^12+...+3^16+3^17. Chứng minh rằng C chia hết cho 40
Câu 3
D= 4^25+4^26+4^27+...=4^29+4^30. Chứng minh rằng D chia hết cho 273
Bài 1 : Cho A = 31 + 32 + 33 + ......+ 3120
a ) Chứng minh A chia hết cho 4 : 13 và 82
b ) Tìm chữ số tận cùng của A
c ) Thu gọn A
d ) Chứng minh : 2A + 3 là lũy thừa của 3
GẤP ... GẤP ... GẤP CÁC BẠN
P = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{4003}{\left(2016.2017\right)^3}\)
Chứng minh rằng : P < 1
A = \(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\)
Chứng minh rằng : 4A < \(10111^6\)
bài) Tính
a) 75%+1,2-2+1/5+20180
b) (-4/3+0,75) :2017/2018+(1+1/3-75%) :2017/2018
c) (2018-1/3-2/4-3/5-4/6-...-2018/2020) : (1/15+1/20+1/25+1/30+...1/10100)
bài) Tính
a) 75%+1,2-2+1/5+20180
b) (-4/3+0,75) :2017/2018+(1+1/3-75%) :2017/2018
c) (2018-1/3-2/4-3/5-4/6-...-2018/2020) : (1/15+1/20+1/25+1/30+...1/10100)
cho A= 1 + 3 +3^2+...+3^99
viết A2 + 1 dưới dạng lũy thừa cơ số 4
\(Cho\) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2018^2}\)
\(Chứng\) \(minh\) \(\frac{2017}{2018}>A>\frac{2008}{2018}\)