Ta có:
\((3b-2a)^2\ge0\)
\(\Rightarrow\) \(9b^2-12ab+4a^2\ge0\)
\(\Rightarrow\) \((9b^2+4a^2+13ab)-25ab\ge0\)
\(\Rightarrow\)\((9b^2+9ab+4a^2+4ab)-25ab\ge0\)
\(\Rightarrow\)\((a+b)\left(9a+4b\right)\ge25ab\)
\(\Rightarrow\) \(\dfrac{9a+4b}{ab}\ge\dfrac{25}{a+b}\)
\(\Rightarrow\) \(\dfrac{9}{b}+\dfrac{4}{a}\ge\dfrac{25}{2}\) ( vì a+b = 2) (đpcm)
(Bài toán này áp dụng theo hệ quả của bất đẳng thức cauchy-schwar.)
