a)Do A chia hết cho 4 nên\(\dfrac{x^2}{x-1}\) \(\in\) Z
suy ra 1 chia hết cho x-1 suy x\(\in\) \(\left\{0;2\right\}\)
b)Do P thuộc Z nên 3 chia hết cho 2x+1
suy ra x\(\left\{-2;-1;0;1\right\}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a)Do A chia hết cho 4 nên\(\dfrac{x^2}{x-1}\) \(\in\) Z
suy ra 1 chia hết cho x-1 suy x\(\in\) \(\left\{0;2\right\}\)
b)Do P thuộc Z nên 3 chia hết cho 2x+1
suy ra x\(\left\{-2;-1;0;1\right\}\)
Cho A= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\) ( x \(\ge\) 0 , x \(\ne\)4 )
Tìm x để A \(\in\) Z
help me !!!
cho biểu thức
p=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a) rÚT GỌN p
B) TÌM GIÁ TRỊ CỦA X ĐỂ p=-1
C) TÌM X THUỘC Z ĐỂ P THUỘC Z
D) SO SÁNH P VỚI 1
E) TÌM GIÁ TRỊ NHỎ NHẤT CỦA p
Cho biểu thức: N=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)với x ≥0; x≠1
a) Rút gọn N
b) Tìm giá trị nhỏ nhất của N
c) Tim x để biểu thức M=\(\dfrac{2\sqrt{x}}{N}\)nhận giá trị nguyên
cho B=\(\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right)\div\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\)
a. rút gọn B
b. tính \(\sqrt{B}\) khi \(x=5+2\sqrt{3}\)
c. tìm x để B= \(\dfrac{1}{2x^3-x-1}\)
d. tìm giá trị của x để giá trị của B không lớn hơn giá trị biểu thức \(\dfrac{1}{x+2}\)
Lm nhanh giúp mk nhé mk đang cần gấp
cho M =\(\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{x^2-2x+1}{2}\)
a, tìm ĐKXĐ của M và rút gọn
b, CMR : nếu 0<x<1 thì M>0
c tính M khi \(x=\dfrac{4}{25}\)
d, tìm x để M=-1
e, tìm x để M<0 ; M>0
g, tìm \(x\in Z\) để \(M\in Z\)
Cho biểu thức H= \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\) ( với x ≥ 0, x≠ 9)
a. Chứng minh rằng M= \(\dfrac{-1}{\sqrt{x}+3}\)
b. Tính giá trị của M với x = \(\dfrac{9}{25}\)
c. Tìm giá trị của x để /M/= \(\dfrac{1}{6}\)
cho biểu thức:\(Q=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\) với \(x\ge0;x\ne1\)
a)rút gọn Q
b)tính giá trị của Q khi \(\left|2x-5\right|\)=3
c)tìm cái giá trị của x để Q=3
d)tìm các giá trị của x để \(Q>\dfrac{1}{2}\)
e)tìm \(x\in Z\) để \(Q\in Z\)
Cho P = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức P. Tính M = P : Q
b) Tìm giá trị nhỏ nhất của biểu thức A = \(x.M+\dfrac{4x+7}{\sqrt{x}+3}\)
cho A=\( \dfrac{x-2}{2+\sqrt{x}}\)(x>=0), B=\({\dfrac{8x-4}{2x+1}}\)(x>0, x khác \( \dfrac{1}{2}\), x khác \(\dfrac{-1}{2}\))
tìm x để \(\dfrac{A}{B}=1\)