ta có:
A = \(\frac{2n+1}{n+3}-\frac{n+5}{n+3}\)
=> A = \(\frac{2n+6-5}{n+3}-\frac{n+3-8}{n+3}\)
=> A = \(\frac{2\left(n+3\right)-5}{n+3}-\left(1-\frac{8}{n+3}\right)\)
=> A = \(2-\frac{5}{n+3}-1+\frac{8}{n+3}\)
=> A = \(2-1-\frac{5}{n+3}+\frac{8}{n+3}\)
=> A = \(1-\frac{13}{n+3}\)
để A nguyên => \(\frac{13}{n+3}\) nguyên
=> \(13⋮n+3\)
=> \(n+3\inƯ_{\left(13\right)}=\left\{1;-1;13;-13\right\}\)
ta có bảng sau:
n+3 | 1 | -1 | 13 | -13 |
n | -4 | -5 | 10 | -16 |
vậy n = {-4; -5; 10; -16}