Lời giải:
$a^{2014}+b^{2014}=a^{2015}+b^{2015}$
$\Leftrightarrow a^{2014}(a-1)+b^{2014}(b-1)=0(1)$
$a^{2015}+b^{2015}=a^{2016}+b^{2016}$
$\Leftrightarrow a^{2015}(a-1)+b^{2015}(b-1)=0(2)$
Lấy $(2)-(1)$ theo vế thu được: $a^{2014}(a-1)^2+b^{2014}(b-1)^2=0$
Ta thấy $a^{2014}(a-1)^2\geq 0; b^{2014}(b-1)^2\geq 0$ nên để tổng của chúng bằng $0$ thì:
$a^{2014}(a-1)^2=b^{2014}(b-1)^2=0$
Mà $a,b>0$ nên $a=b=1$
Do đó $S=2$